Aromatase activity in the preoptic area differs between aggressive and nonaggressive male house mice.

نویسندگان

  • J C Compaan
  • A Wozniak
  • A J De Ruiter
  • J M Koolhaas
  • J B Hutchison
چکیده

Treatment with testosterone (T) or estradiol (E2) facilitates intraspecific aggressive behavior in adult rodents. Brain aromatization of T to E2 appears to be involved in facilitation of fighting behavior. In the present study we measure the in vitro brain aromatase activity (AA) in the preoptic area (POA), amygdaloid nuclei (Am), ventromedial hypothalamus (VMH), and parietal cortex (CTX) from two strains of adult male house mice, which were genetically selected for territorial aggression, based upon their attack latencies (short attack latency: SAL; long attack latency: LAL). The results reveal a higher AA in the POA of nonaggressive LAL males, as compared to aggressive SAL animals. The POA AA is, thus, inversely correlated with aggressiveness. The AA levels in both the VMH and Am do not differ significantly between strains. Furthermore, a differential brain area-specific AA distribution exists: POA > VMH AA in LAL, whereas POA < VMH in SAL. In both selection lines, the Am exhibits the highest levels of AA, as compared to the other investigated areas. Kinetic studies revealed that the aromatase Km is similar in both strains. The results indicate that the strain difference in AA is specific to the POA, but is not necessarily positively correlated with circulating plasma T levels. Other factors, in addition to androgen, are probably involved in the regulation of POA aromatase. We suggest that a higher neural androgen receptor sensitivity exists in the POA of nonaggressive LAL males, resulting in higher adult POA AA, despite lower concentrations of circulating T.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brain aromatase activity and plasma testosterone levels are elevated in aggressive male mice during early ontogeny.

Testosterone (T) and estradiol (E2) are involved in intraspecific aggressive behavior. Both steroids exert their effects on behaviour via the hypothalamus and the amygdala (Am) of the central nervous system (CNS). In these brain areas T is converted to E2, by the enzyme aromatase. Both the levels of brain aromatase activity (AA) and the effects of T and E2 on aggressive behavior in adulthood de...

متن کامل

Variation in aromatase activity in the medial preoptic area and plasma progesterone is associated with the onset of paternal behavior.

The effects of aromatase within the brain on sexual behavior have been studied in a wide variety of species. Relatively few non-mating behaviors have been considered, despite evidence that estrogen affects many social behaviors. Testosterone promotes paternal behavior in California mouse (Peromyscus californicus) fathers, acting primarily via aromatization to estradiol. Virgin male California m...

متن کامل

Quantitative Analysis of Long-Form Aromatase mRNA in the Male and Female Rat Brain

In vitro studies show that estrogens acutely modulate synaptic function in both sexes. These acute effects may be mediated in vivo by estrogens synthesized within the brain, which could fluctuate more rapidly than circulating estrogens. For this to be the case, brain regions that respond acutely to estrogens should be capable of synthesizing them. To investigate this question, we used quantitat...

متن کامل

Aromatase regulates aggression in the African cichlid fish Astatotilapia burtoni.

The roles of estrogen and androgens in male social behavior are well studied, but little is known about how these hormones contribute to behavior in a social hierarchy. Here we test the role of aromatase, the enzyme that converts testosterone into estradiol, in mediating aggression and reproductive behavior in male Astatotilapia burtoni, an African cichlid fish that displays remarkable plastici...

متن کامل

Central Giant Cell Granuloma of the Jaws: Correlation between Vascularity and Biologic Behavior

Introduction: Giant cell lesions of the bone comprise a group of jaw bone pathologies. Different pathogeneses such as reactive, vascular or neoplastic have been proposed for these lesions. In addition, differentiating between aggressive and nonaggressive central giant cell granuloma (CGCG) of the jaws based on histopathologic features is still impossible and due to different treatment protocols...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain research bulletin

دوره 35 1  شماره 

صفحات  -

تاریخ انتشار 1994