Microwave-assisted synthesis of highly water-soluble graphene towards electrical DNA sensor.

نویسندگان

  • Bong Gill Choi
  • HoSeok Park
  • Min Ho Yang
  • Young Mee Jung
  • Sang Yup Lee
  • Won Hi Hong
  • Tae Jung Park
چکیده

Graphene sheets have the potential for practical applications in electrochemical devices, but their development has been impeded by critical problems with aggregation of graphene sheets. Here, we demonstrated a facile and bottom-up approach for fabrication of DNA sensor device using water-soluble sulfonated reduced graphene oxide (SRGO) sheets via microwave-assisted sulfonation (MAS), showing enhanced sensitivity, reliability, and low detection limit. Key to achieving these performances is the fabrication of the SRGOs, where the MAS method enabled SRGOs to be highly dispersed in water (10 mg mL(-1)) due to the acidic sulfonated groups generated within 3 min of the functionalization reaction. The water-soluble SRGO-DNA (SRGOD) hybrids prepared by electrostatic interactions between a flat single layer of graphene sheets and DNAs are suitable for fabrication of electrical DNA sensor devices because of the unique electrical characteristics of SRGODs. The high sensing performance of SRGOD sensors was demonstrated with detection of DNA hybridization using complementary DNAs, single base mismatched DNAs, and noncomplementary DNAs, with results showing higher sensitivity and lower detection limit than those of reduced graphene oxide-based DNA sensors. Simple and easy fabrication of DNA sensor devices using SRGODs is expected to provide an effective way for electrical detection of DNA hybridization using miniature sensors without the labor-intensive labeling of the sensor and complex measurement equipment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microwave-Assisted Synthesis of Highly-Crumpled, Few-Layered Graphene and Nitrogen-Doped Graphene for Use as High-Performance Electrodes in Capacitive Deionization

Capacitive deionization (CDI) is a promising procedure for removing various charged ionic species from brackish water. The performance of graphene-based material in capacitive deionization is lower than the expectation of the industry, so highly-crumpled, few-layered graphene (HCG) and highly-crumpled nitrogen-doped graphene (HCNDG) with high surface area have been introduced as promising candi...

متن کامل

Microwave-Assisted Three Component Cyclocondensation Reaction: A Facile Synthesis of Highly Functionalized Cyclohexene Derivatives

Microwave-assisted three component cyclocondensation reactions of aldehydes, amides and dienophiles in the presence of acetic anhydride and para-toluenesulfonic acid as a catalyst to afford the highly substituted cyclohexene derivatives, in relatively good yields after several minutes are reported.

متن کامل

Microwave-synthesized freestanding iron-carbon nanotubes on polyester composites of woven Kevlar fibre and silver nanoparticle-decorated graphene

We synthesized Ag nanoparticle-decorated multilayered graphene nanosheets (Ag-graphene) from graphite nanoplatelets and silver nitrate through 90-100 s of microwave exposure, without the use of any mineral acids or harsh reducing agents. Fe nanoparticle-decorated carbon nanotubes (Fe-CNTs) were grown on polypyrrole (PPy) deposited on woven Kevlar fibre (WKF), using ferrocene as a catalyst, unde...

متن کامل

Highly Sensitive Amperometric Sensor Based on Gold Nanoparticles Polyaniline Electrochemically Reduced Graphene Oxide Nanocomposite for Detection of Nitric Oxide

A sensitive electrochemical sensor was fabricated for selective detection of nitric oxide (NO) based on electrochemically reduced graphene (ErGO)-polyaniline (PANI)-gold nanoparticles (AuNPs) nanocomposite. It was coated on a gold (Au) electrode through stepwise electrodeposition to form AuNPs-PANI-ErGO/Au electrode. The AuNPs-PANI-rGO nanocomposite was characterized by Field Emission Scanning ...

متن کامل

Nanosheets of BiOCl Incorporated in Microflowers: Microwave Assisted Synthesis and Dye-Photosensitized Removal of Pollutants

BiOCl microflowers were synthesized using bismuth nitrate pentahydrate and sodium chloride by microwave (MW) assisted synthesis method for 23 minutes at 180 W. Scanning electron microscopy (SEM) studies revealed a unique morphology of flower-like assemblies comprised of nanosheets. The X-ray diffraction (XRD) pattern showed that a highly pure and crystalline phase has been obtained. The energy ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 2 12  شماره 

صفحات  -

تاریخ انتشار 2010