Cooling of the Arctic and Antarctic Polar Stratospheres due to Ozone Depletion
نویسندگان
چکیده
Long time records of stratospheric temperatures indicate that substantial cooling has occurred during spring over polar regions of both hemispheres. These cooling patterns are coincident with observed recent ozone depletions. Time series of temperature from radiosonde, satellite, and National Centers for Environmental Prediction reanalysis data are analyzed in order to isolate the space–time structure of the observed temperature changes. The Antarctic data show strong cooling (of order 6–10 K) in the lower stratosphere (;12–21 km) since approximately 1985. The cooling maximizes in spring (October–December), with small but significant changes extending throughout Southern Hemisphere summer. No Antarctic temperature changes are observed during midwinter. Significant warming is found during spring at the uppermost radiosonde data level (30 mb, ;24 km). These observed temperature changes are all consistent with model predictions of the radiative response to Antarctic polar ozone depletion. Winter and spring temperatures in Northern Hemisphere polar regions also indicate a strong cooling in the 1990s, and the temperature changes are coherent with observed ozone losses. The overall space–time patterns are similar between both hemispheres, suggesting that the radiative response to ozone depletion is an important component of the Arctic cooling as well.
منابع مشابه
Fundamental differences between Arctic and Antarctic ozone depletion.
Antarctic ozone depletion is associated with enhanced chlorine from anthropogenic chlorofluorocarbons and heterogeneous chemistry under cold conditions. The deep Antarctic "hole" contrasts with the generally weaker depletions observed in the warmer Arctic. An unusually cold Arctic stratospheric season occurred in 2011, raising the question of how the Arctic ozone chemistry in that year compares...
متن کاملDepletion of stratospheric ozone over the Antarctic and Arctic: responses of plants of polar terrestrial ecosystems to enhanced UV-B, an overview.
Depletion of stratospheric ozone over the Antarctic has been re-occurring yearly since 1974, leading to enhanced UV-B radiation. Arctic ozone depletion has been observed since 1990. Ozone recovery has been predicted by 2050, but no signs of recovery occur. Here we review responses of polar plants to experimentally varied UV-B through supplementation or exclusion. In supplementation studies comp...
متن کاملContrasts between Antarctic and Arctic ozone depletion.
This work surveys the depth and character of ozone depletion in the Antarctic and Arctic using available long balloon-borne and ground-based records that cover multiple decades from ground-based sites. Such data reveal changes in the range of ozone values including the extremes observed as polar air passes over the stations. Antarctic ozone observations reveal widespread and massive local deple...
متن کاملThe ocean's role in polar climate change: asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing
In recent decades, the Arctic has been warming and sea ice disappearing. By contrast, the Southern Ocean around Antarctica has been (mainly) cooling and sea-ice extent growing. We argue here that interhemispheric asymmetries in the mean ocean circulation, with sinking in the northern North Atlantic and upwelling around Antarctica, strongly influence the sea-surface temperature (SST) response to...
متن کاملSurface ozone depletion episodes in the Arctic and Antarctic from historical ozonesonde records
Episodes of ozone depletion in the lowermost Arctic atmosphere (0–2 km) at polar sunrise have been intensively studied at Alert, Canada, and are thought to result from catalytic reactions involving bromine. Recent observations of high concentrations of tropospheric BrO over large areas of the Arctic and Antarctic suggest that such depletion events should also be seen by ozonesondes at other pol...
متن کامل