Editorial: Neuronal Stochastic Variability: Influences on Spiking Dynamics and Network Activity

نویسندگان

  • Mark D. McDonnell
  • Joshua H. Goldwyn
  • Benjamin Lindner
چکیده

Stochastic variability is present across all scales of brain activity. At the single-cell level, for instance, synaptic transmission is mediated by stochastic release of neurotransmitter and membrane potentials fluctuate due to random conformational changes of ion channels. When these cell-level sources of stochastic variability emerge at the network level, they generate fluctuating currents that drive complex network dynamics. Even if intrinsic cellular noise sources are neglected, the interaction of many nonlinear units in recurrent networks typically leads to an effective network noise which is often mathematically tractable in a stochastic framework. This Research Topic brings together works that address the pressing challenges of developing computational tools and mathematical theories that advance our understanding of stochastic neural dynamics. Six contributions cover stochastic variability at the single-cell level. Moezzi et al. study synaptic coupling between inner hair cells and auditory nerve fibers. Three works update our understanding of ion channel noise in stochastic versions of the Hodgkin-Huxley equations (O’Donnell and Van Rossum; Pezo et al.; Rowat and Greenwood). Puzerey and Galán quantify information transmission in a stochastic Hodgkin-Huxley neuron model that receives barrages of balanced excitatory and inhibitory inputs. Lazar and Zhou communicate a modeling framework that includes dendritic processing of noisy inputs and channel-noise influenced spike generation. The remaining four studies offer new perspectives on network dynamics. Dummer et al. works out the requirements for self-consistent input/output statistics for neurons embedded in recurrent networks. Lagzi and Rotter develop a Markov chain model that clarifies the stochastic dynamics of balanced networks. Mejias and Longtin explore effects of neural heterogeneity on network response properties. Lajoie et al. make elegant use of random dynamical systems theory to analyse stimulus encoding in in chaotic networks. Two commentary articles are also part of this research topic: the commentary of Thomas on Lajoie et al. and the commentary of Baroni and Mazzoni on Mejias and Longtin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Dynamics as Sampling: A Model for Stochastic Computation in Recurrent Networks of Spiking Neurons

The organization of computations in networks of spiking neurons in the brain is still largely unknown, in particular in view of the inherently stochastic features of their firing activity and the experimentally observed trial-to-trial variability of neural systems in the brain. In principle there exists a powerful computational framework for stochastic computations, probabilistic inference by s...

متن کامل

Short term synaptic depression and stochastic vesicle dynamics reduce and reshape neuronal correlations

Correlated neuronal activity is an important feature in many neural codes, a neural correlate of a variety of cognitive states, as well as a signature of several disease states in the nervous system. The cellular and circuit mechanics of neural correlations is a vibrant area of research. Synapses throughout the cortex exhibit a form of short term depression where increased presynaptic firing ra...

متن کامل

Short-term synaptic depression and stochastic vesicle dynamics reduce and shape neuronal correlations.

Correlated neuronal activity is an important feature in many neural codes, a neural correlate of a variety of cognitive states, as well as a signature of several disease states in the nervous system. The cellular and circuit mechanics of neural correlations is a vibrant area of research. Synapses throughout the cortex exhibit a form of short-term depression where increased presynaptic firing ra...

متن کامل

Controlling the spontaneous spiking regularity via channel blocking on Newman-Watts networks of Hodgkin-Huxley neurons

We investigate the regularity of spontaneous spiking activity on Newman-Watts small-world networks consisting of biophysically realistic Hodgkin-Huxley neurons with a tunable intensity of intrinsic noise and fraction of blocked voltage-gated sodium and potassium ion channels embedded in neuronal membranes. We show that there exists an optimal fraction of shortcut links between physically distan...

متن کامل

In-phase and anti-phase synchronization in noisy Hodgkin-Huxley neurons.

We numerically investigate the influence of intrinsic channel noise on the dynamical response of delay-coupling in neuronal systems. The stochastic dynamics of the spiking is modeled within a stochastic modification of the standard Hodgkin-Huxley model wherein the delay-coupling accounts for the finite propagation time of an action potential along the neuronal axon. We quantify this delay-coupl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Frontiers in computational neuroscience

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2016