General Curvature Estimates for Stable H-surfaces Immersed into a Space Form

نویسنده

  • Laurent Hauswirth
چکیده

In this paper, we give general curvature estimates for constant mean curvature surfaces immersed into a simply-connected 3-dimensional space form. We obtain bounds on the norm of the traceless second fundamental form and on the Gaussian curvature at the center of a relatively compact stable geodesic ball (and, more generally, of a relatively compact geodesic ball with stability operator bounded from below). As a by-product, we show that the notions of weak and strong Morse indices coincide for complete non-compact constant mean curvature surfaces. We also derive a geometric proof of the fact that a complete stable surface with constant mean curvature 1 in the usual hyperbolic space must be a horosphere. R esum e. Dans cet article, on etablit une estim ee de la courbure pour des surfaces de courbure moyenne constante immerg ees dans un espace de dimension 3, simplement connexe et de courbure constante. On obtient des bornes pour la courbure de Gauss et pour la norme de la seconde forme fondamentale a trace nulle au centre d'une boule g eod esique stable rela-tivement compacte (et plus g en eralement d'une boule g eod esique d'indice de Morse ni). Comme cons equence, on montre que les notions d'indices de Morse faible et fort coincident pour les surfaces de courbure moyenne constante. On utilise ces estim ees pour avoir une preuve g eom etrique du fait q'une surface de courbure moyenne 1 compl ete stable dans l'espace hyperbolique doit ^ etre une horosph ere.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Concentration of Total Curvature of Minimal Surfaces in H × R Ricardo Sa Earp and Eric Toubiana

We prove a phenomenon of concentration of total curvature for stable minimal surfaces in the product space H × R, where H is the hyperbolic plane. Under some geometric conditions on the asymptotic boundary of an oriented stable minimal surface immersed in H × R, it has infinite total curvature. In particular, we infer that a minimal graph M in H × R whose asymptotic boundary is a graph over an ...

متن کامل

Spacelike hypersurfaces in Riemannian or Lorentzian space forms satisfying L_k(x)=Ax+b

We study connected orientable spacelike hypersurfaces $x:M^{n}rightarrowM_q^{n+1}(c)$, isometrically immersed into the Riemannian or Lorentzian space form of curvature $c=-1,0,1$, and index $q=0,1$, satisfying the condition $~L_kx=Ax+b$,~ where $L_k$ is the $textit{linearized operator}$ of the $(k+1)$-th mean curvature $H_{k+1}$ of the hypersurface for a fixed integer $0leq k

متن کامل

General Curvature Estimates for Stable H-surfaces in 3-manifolds and Applications

We obtain an estimate for the norm of the second fundamental form of stable H-surfaces in Riemannian 3-manifolds with bounded sectional curvature. Our estimate depends on the distance to the boundary of the surface and on the bound on the sectional curvature but not on the manifold itself. We give some applications, in particular we obtain an interior gradient estimate for H-sections in Killing...

متن کامل

Optimal length estimates for stable CMC surfaces in 3-space-forms

In this paper, we study stable constant mean curvature H surfaces in R. We prove that, in such a surface, the distance from a point to the boundary is less that π/(2H). This upper-bound is optimal and is extended to stable constant mean curvature surfaces in space forms.

متن کامل

Umbilicity of (Space-Like) Submanifolds of Pseudo-Riemannian Space Forms

We study umbilic (space-like) submanifolds of pseudo-Riemannian space forms, then define totally semi-umbilic space-like submanifold of pseudo Euclidean space and relate this notion to umbilicity. Finally we give characterization of total semi-umbilicity for space-like submanifolds contained in pseudo sphere or pseudo hyperbolic space or the light cone.A pseudo-Riemannian submanifold M in (a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999