Supersymmetric Lie Algebra

نویسنده

  • Jacob M. Schreiber
چکیده

This work is an investigation into the structure and properties of Lie hypermatrix algebra generated by a semisimple basis. By using new algebraic tools; namely cubic hypermatrices I obtain an algebraic structure associated with the basis of a semisimple Lie algebra, and I show that the semisimple Lie basis is a generator of infinite periodic semisimple hypermatrix structures, that has a classical Lie algebra decomposition (Bourbaki, 1980; Humphreys, 1972; Serre, 1987); specifically a set of Lie algebras composed of hypermatrices. The generators of higher dimensional semisimple Lie algebra are shown to be special supersymmetric, anti-symmetric and certain skew-symmetric hypermatrices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supersymmetric Hypermatrix Lie Algebra and Hypermatrix Groups Generated by the Dihedral Set D3

This work is an investigation into the structure and properties of supersymmetric hypermatrix Lie algebra generated by elements of the dihedral group D3. It is based on previous work on the subject of supersymmetric Lie algebra (Schreiber, 2012). In preview work I used several new algebraic tools; namely cubic hypermatrices (including special arrangements of such hypermatrices) and I obtained a...

متن کامل

Lattice of full soft Lie algebra

In ‎this ‎paper, ‎we ‎study ‎the ‎relation ‎between ‎the ‎soft ‎sets ‎and ‎soft ‎Lie ‎algebras ‎with ‎the ‎lattice theory. ‎We ‎introduce ‎the ‎concepts ‎of ‎the ‎lattice ‎of ‎soft ‎sets, ‎full ‎soft ‎sets ‎and ‎soft ‎Lie ‎algebras ‎and next, we ‎verify ‎some ‎properties ‎of ‎them. We ‎prove ‎that ‎the ‎lattice ‎of ‎the ‎soft ‎sets ‎on ‎a fixed parameter set is isomorphic to the power set of a ...

متن کامل

On dimensions of derived algebra and central factor of a Lie algebra

Some Lie algebra analogues of Schur's theorem and its converses are presented. As a result, it is shown that for a capable Lie algebra L we always have dim L=Z(L) 2(dim(L2))2. We also give give some examples sup- porting our results.

متن کامل

Current Algebra of Super WZNW Models

We derive the current algebra of supersymmetric principal chiral models with a Wess-Zumino term. At the critical point one obtains two commuting super Kac-Moody algebra as expected, but in general there are intertwining fields connecting both right and left sectors, analogously to the bosonic case. Moreover, in the present supersymmetric extension we have a quadratic algebra, rather than an aff...

متن کامل

Lie triple derivation algebra of Virasoro-like algebra

Let $mathfrak{L}$ be the Virasoro-like algebra and $mathfrak{g}$ itsderived algebra, respectively. We investigate the structure of the Lie triplederivation algebra of $mathfrak{L}$ and $mathfrak{g}$. We provethat they are both isomorphic to $mathfrak{L}$, which provides twoexamples of invariance under triple derivation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012