Estimates for the ∂̄-neumann Problem and Nonexistence of Levi-flat Hypersurfaces in Cp

نویسندگان

  • Jianguo Cao
  • Mei-Chi Shaw
  • Lihe Wang
چکیده

Let Ω be a pseudoconvex domain with C-smooth boundary in CP. We prove that the ∂̄-Neumann operator N exists for (p, q)-forms on Ω. Furthermore, there exists a t0 > 0 such that the operators N , ∂̄N , ∂̄N and the Bergman projection are regular in the Sobolev space W (Ω̄) for t < t0. The boundary estimates above have applications in complex geometry. We use the estimates to prove the nonexistence of C real Levi-flat hypersurfaces in CP. We also show that there exist no non-zero L-holomorphic (p, 0)-forms on any pseudoconcave domain in CP with p > 0.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mathematische Zeitschrift Estimates for the ∂̄-Neumann problem and nonexistence of C2 Levi-flat hypersurfaces in CP

Let be a pseudoconvex domain with C2 boundary in CP, n ≥ 2. We prove that the ∂̄-Neumann operator N exists for square-integrable forms on . Furthermore, there exists a number 0 > 0 such that the operators N , ∂̄∗N , ∂̄N and the Bergman projection are regular in the Sobolev space W ( ) for < 0. The ∂̄-Neumann operator is used to construct ∂̄-closed extension on for forms on the boundary b . This give...

متن کامل

Estimates for the ∂̄-neumann Problem and Nonexistence of C Levi-flat Hypersurfaces in Cp*

Let Ω be a pseudoconvex domain with C2 boundary in CPn, n ≥ 2. We prove that the ∂̄-Neumann operator N exists for square-integrable forms on Ω. Furthermore, there exists a number 0 > 0 such that the operators N , ∂̄∗N , ∂̄N and the Bergman projection are regular in the Sobolev space W (Ω) for < 0. The ∂̄-Neumann operator is used to construct ∂̄-closed extension on Ω for forms on the boundary bΩ. Thi...

متن کامل

Microlocalization and Nonexistence of C 2 Levi-flat Hypersurfaces in Cp 2

Theorem. There exist no C Levi-flat real hypersurfaces in CP . This improves an earlier result of Siu [Si2] where C smoothness is required. For the nonexistence of Levi-flat hypersurfaces in CP with n ≥ 3, Lins-Neto [LN] first proved the nonexistence of real-analytic hypersurfaces in CP. Nonexistence of C Levi-flat hypersurfaces in CP was proved for n ≥ 3 by Siu [Si1]. It is proved in a recent ...

متن کامل

The ∂̄ - Cauchy problem and nonexistence of Lipschitz Levi - flat hypersurfaces in C Pn with n ≥ 3

In this paper we study the Cauchy–Riemann equation in complex projective spaces. Specifically, we use the modified weight function method to study the ∂̄-Neumann problem on pseudoconvex domains in these spaces. The solutions are used to study function theory on pseudoconvex domains via the ∂̄-Cauchy problem. We apply our results to prove nonexistence of Lipschitz Levi-flat hypersurfaces in comple...

متن کامل

Nonexistence and existence results for a 2$n$th-order $p$-Laplacian discrete Neumann boundary value problem

This paper is concerned with a 2nth-order p-Laplacian difference equation. By using the critical point method, we establish various sets of sufficient conditions for the nonexistence and existence of solutions for Neumann boundary value problem and give some new results. Results obtained successfully generalize and complement the existing ones.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003