Stability and Hopf Bifurcation in a Diffusive Predator-Prey System with Beddington-DeAngelis Functional Response and Time Delay

نویسندگان

  • Yuzhen Bai
  • Xiaopeng Zhang
  • Marcia Federson
چکیده

and Applied Analysis 3 Under A1 , let u u − u∗, v v − v∗ and drop the bars for simplicity of notations, then 1.1 can be transformed into the following equivalent system: ut d1Δu t, x u u∗ 1 − u t − τ, x u∗ − s u u ∗ v v∗ m u u∗ n v v∗ , vt d2Δv t, x r u u∗ v v∗ m u u∗ n v v∗ − d v v∗ . 2.2 Let P u, v uv/ m u nv . By u∗ 1 − u∗ − su∗v∗/ m u∗ nv∗ 0 and −dv∗ ru∗v∗/ m u∗ nv∗ 0 2.2 becomes ut d1Δu t, x 1 − u∗ − a1 u t − u∗u t − τ, x − a2v − uu t − τ, x − f u, v , vt d2Δv t, x b1u t b2 − d v t g u, v , 2.3 where a1 sP10 u∗, v∗ , a2 sP01 u∗, v∗ , b1 rP10 u∗, v∗ , b2 rP01 u∗, v∗ , and

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hopf bifurcation analysis of a diffusive predator-prey model with Monod-Haldane response

In this paper, we have studied the diffusive predator-prey model with Monod-Haldane functional response. The stability of the positive equilibrium and the existence of Hopf bifurcation are investigated by analyzing the distribution of eigenvalues without diffusion. We also study the spatially homogeneous and non-homogeneous periodic solutions through all parameters of the system which are spati...

متن کامل

Threshold harvesting policy and delayed ratio-dependent functional response predator-prey model

This paper deals with a delayed ratio-dependent functional response predator-prey model with a threshold harvesting policy. We study the equilibria of the system before and after the threshold. We show that the threshold harvesting can improve the undesirable behavior such as nonexistence of interior equilibria. The global analysis of the model as well as boundedness and permanence properties a...

متن کامل

Delay induced oscillation in predator-prey system with Beddington-DeAngelis functional response

The Beddington–DeAngelis predator–prey system with distributed delay is studied in this paper. At first, the positive equilibrium and its local stability are investigated. Then, with the mean delay as a bifurcation parameter, the system is found to undergo a Hopf bifurcation. The bifurcating periodic solutions are analyzed by means of the normal form and center manifold theorems. Finally, numer...

متن کامل

Dynamic behavior of a Beddington-DeAngelis type stage structured predator-prey model

This paper deals with a robust stage structured predator–prey model with Beddington– DeAngelis-type functional response. The proposed mathematical model consists of a system of three nonlinear ordinary differential equations to stimulate the interactions between prey population, juvenile predators and adult predator population. The positivity, boundedness and the conditions for uniform persiste...

متن کامل

Dynamical Analysis in a Delayed Predator-Prey Model with Two Delays

A class of Beddington-DeAngelis functional response predator-prey model is considered. The conditions for the local stability and the existence of Hopf bifurcation at the positive equilibrium of the system are derived. Some explicit formulae for determining the stability and the direction of the Hopf bifurcation periodic solutions bifurcating from Hopf bifurcations are obtained by using the nor...

متن کامل

The Dynamical Analysis of a Delayed Prey-Predator Model with a Refuge-Stage Structure Prey Population

A mathematical model describing the dynamics  of a  delayed  stage structure prey - predator  system  with  prey  refuge  is  considered.  The  existence,  uniqueness  and bounded- ness  of  the  solution  are  discussed.    All  the  feasibl e  equilibrium  points  are determined.  The   stability  analysis  of  them  are  investigated.  By  employ ing  the time delay as the bifurcation parame...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014