Wavelet analogue of the Ginzburg-Landau energy and its Γ-convergence

نویسندگان

  • J. A. Dobrosotskaya
  • A. L. Bertozzi
چکیده

This paper considers a wavelet analogue of the classical Ginzburg-Landau energy, where the Hseminorm is replaced by the Besov seminorm defined via an arbitrary regular wavelet. We prove that functionals of this type converge, in the Γ-sense, to a weighted analogue of the TV functional on characteristic functions of finite-perimeter sets. The Γ-limiting functional is defined explicitly, in terms of the wavelet that is used to define the energy. We show that the limiting energy is none other than the surface tension energy in the 2D Wulff problem and its minimizers are represented by corresponding Wulff shapes. This fact as well as the Γ-convergence results are illustrated with a series of computational examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of the Wavelet Ginzburg-Landau Energy in Image Applications with Edges

A wavelet analogue of the Ginzburg–Landau energy (WGL) was recently designed and integrated in variational methods for image processing. In this paper we prove global well– posedness of the gradient descent equation (in the weak sense) and convergence to an extremum. We also develop further uses for this energy completed with an additional edge preserving forcing term. We present examples inclu...

متن کامل

From the Ginzburg-Landau Model to Vortex Lattice Problems

We introduce a “Coulombian renormalized energy” W which is a logarithmic type of interaction between points in the plane, computed by a “renormalization.” We prove various of its properties, such as the existence of minimizers, and show in particular, using results from number theory, that among lattice configurations the triangular lattice is the unique minimizer. Its minimization in general r...

متن کامل

Exact solutions of the 2D Ginzburg-Landau equation by the first integral method

The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.

متن کامل

Compactness Results for Ginzburg-landau Type Functionals with General Potentials

We study compactness and Γ-convergence for Ginzburg-Landau type functionals. We only assume that the potential is continuous and positive definite close to one circular well, but allow large zero sets inside the well. We show that the relaxation of the assumptions does not change the results to leading order unless the energy is very large.

متن کامل

Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation

‎In this paper‎, ‎we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-‎dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method‎, homogeneous balance method, extended F-expansion method‎. ‎By ‎using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009