Informed Non-convex Robust Principal Component Analysis with Features
نویسندگان
چکیده
We revisit the problem of robust principal component analysis with features acting as prior side information. To this aim, a novel, elegant, non-convex optimization approach is proposed to decompose a given observation matrix into a low-rank core and the corresponding sparse residual. Rigorous theoretical analysis of the proposed algorithm results in exact recovery guarantees with low computational complexity. Aptly designed synthetic experiments demonstrate that our method is the first to wholly harness the power of non-convexity over convexity in terms of both recoverability and speed. That is, the proposed non-convex approach is more accurate and faster compared to the best available algorithms for the problem under study. Two real-world applications, namely image classification and face denoising further exemplify the practical superiority of the proposed method.
منابع مشابه
Robust Transfer Principal Component Analysis with Rank Constraints
Principal component analysis (PCA), a well-established technique for data analysis and processing, provides a convenient form of dimensionality reduction that is effective for cleaning small Gaussian noises presented in the data. However, the applicability of standard principal component analysis in real scenarios is limited by its sensitivity to large errors. In this paper, we tackle the chall...
متن کاملRobust Principal Component Analysis with Side Information
The robust principal component analysis (robust PCA) problem has been considered in many machine learning applications, where the goal is to decompose the data matrix to a low rank part plus a sparse residual. While current approaches are developed by only considering the low rank plus sparse structure, in many applications, side information of row and/or column entities may also be given, and ...
متن کاملMatrix Completion and Related Problems via Strong Duality
This work studies the strong duality of non-convex matrix factorization problems: we show that under certain dual conditions, these problems and its dual have the same optimum. This has been well understood for convex optimization, but little was known for non-convex problems. We propose a novel analytical framework and show that under certain dual conditions, the optimal solution of the matrix...
متن کاملGeneralised Scalable Robust Principal Component Analysis
The robust estimation of the low-dimensional subspace that spans the data from a set of high-dimensional, possibly corrupted by gross errors and outliers observations is fundamental in many computer vision problems. The state-of-the-art robust principal component analysis (PCA) methods adopt convex relaxations of `0 quasi-norm-regularised rank minimisation problems. That is, the nuclear norm an...
متن کاملAn application of principal component analysis and logistic regression to facilitate production scheduling decision support system: an automotive industry case
Production planning and control (PPC) systems have to deal with rising complexity and dynamics. The complexity of planning tasks is due to some existing multiple variables and dynamic factors derived from uncertainties surrounding the PPC. Although literatures on exact scheduling algorithms, simulation approaches, and heuristic methods are extensive in production planning, they seem to be ineff...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1709.04836 شماره
صفحات -
تاریخ انتشار 2017