In Situ Heating Transmission Electron Microscopy

نویسنده

  • Hiroyasu Saka
چکیده

93 Abstract Temperature is one of the most important factors affecting the state and behavior of materials. In situ heating transmission electron microscopy (TEM) is a powerful tool for understanding such temperature effects, and recently in situ heating TEM has made significant progress in terms of temperature available and resolution attained. This article briefly describes newly developed specimen-heating holders, which are useful in carrying out in situ heating TEM experiments. It then focuses on three main applications of these specimen holders: solid–solid reactions, solid–liquid reactions (including highresolution observation of a solid–liquid interface, size dependence of the melting temperatures of one-, twoand three-dimensionally reduced systems, size dependence of the contact angle of fine metal liquid, and wetting of Si with liquid Au or Al) and solid–gas reactions. These results illustrate the benefit of in situ heating TEM for providing fundamental information on temperature effects on materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of tin-filled carbon nanofibres by microwave plasma vapour deposition and their in situ heating observation by environmental transmission electron microscopy

Sn-filled carbon nanofibres (CNFs) are fabricated by microwave plasma chemical deposition. Scanning electron microscopy observations revealed the existence of a Sn island under the CNFs. The structure of the CNFs is investigated, and the behaviour of Sn in the internal space of CNFs is revealed by performing in situ heating observations by environmental transmission electron microscopy (ETEM). ...

متن کامل

In situ heating transmission electron microscopy observation of nanoeutectic lamellar structure in Sn-Ag-Cu alloy on Au under-bump metallization.

We investigated the microstructural evolution of Sn(96.4)Ag(2.8)Cu(0.8) solder through in situ heating transmission electron microscopy observations. As-soldered bump consisted of seven layers, containing the nanoeutectic lamella structure of AuSn and Au₅Sn phases, and the polygonal grains of AuSn₂ and AuSn₄, on Au-plated Cu bond pads. Here, we found that there are two nanoeutectic lamellar lay...

متن کامل

In situ transmission electron microscopy observations of sublimation in silver nanoparticles.

In situ heating experiments were performed in a transmission electron microscope (TEM) to monitor the thermal stability of silver nanoparticles. The sublimation kinetics from isothermal experiments on individual nanoparticles was used to assess the actual temperatures of the nanoparticles by considering the localized heating from the electron beam. For isolated nanoparticles, beam heating under...

متن کامل

Effect of surface carbon coating on sintering of silver nanoparticles: in situ TEM observations.

In this work, in situ transmission electron microscopy heating has been used to investigate the effects of a carbon capping layer on sintering of silver nanoparticles. For the first time, we make direct and real-time measurements of surface diffusivity of silver in nanoparticles coated with carbon. We observe that the carbon surface coatings may significantly inhibit sintering in silver nanopar...

متن کامل

Ex-situ studies on calcinations of structural, optical and morphological properties of post-growth nanoparticles CeO2 by HRTEM and SAED

Nanocrystalline particles of Cerium Oxide (CeO2) have been prepared by the chemical precipitation method using Cerium nitrate and Urea with a molar ratio of 1:2. The results revealed that the formation of CeO2 fine particles is influenced by molar ratio of metal nitrates to fuel. Well faceted CeO2 nanoparticles, were synthesized by thermal-assisted dissociation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008