An Intelligent Conversational Agent Approach to Extracting Queries from Natural Language

نویسندگان

  • Karen Pudner
  • Keeley A. Crockett
  • Zuhair Bandar
چکیده

to determine the answer the user's query. I. INTRODUCTION Typically, natural language database interfaces use parsing to identify and categorise the user's input [1]. The parsing process requires the creation of a lexicon, which includes both database specific and non-database specific terms. Different natural language database interfaces (NLDI's) use different methods to create the database specific terms. Microsoft English Query includes an authoring tool, so that database users can populate the lexicon with synonyms and alternative phrasings for database elements such as relation and attribute names [2]. Additionally, words which define the relationship between different database elements can be added (i.e. Customers buy products). Masque/SQL takes a similar approach, helping users to define the relationships between database elements using an " is-a " hierarchy [3]. English Language Frontend (ELF) [4] and Precise [5] find database specific terms by extracting information on the schema and entity names from a database, and using a dictionary to identify possible synonyms. In all these cases, once user input has been parsed, the relevant elements of user input are identified and related to the

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Multilevel Natural Language Query Approach for Conversational Agent Systems

The main aim of this research is to investigate a novel technique for implementing a conversational intelligent agent system on the web. The research will focus on a multilevel natural language query approach. While the present World Wide Web provides a distributed hypermedia interface to the vast amount of information on the Internet, there is a lack of appropriate metadata to that content. In...

متن کامل

Natural Human-System Interaction Using Intelligent Conversational Agents

In the context of the prodigious growth of network-based information services, messaging and edutainment, we introduce new tools that enable information management through the use of efficient multimodal interaction using natural language and speech processing. These tools allow the system to respond to close-to natural language queries by means of pattern matching. A new approach which gives t...

متن کامل

Top-down Natural Language Query Approach for Embodied Conversational Agent

This paper describes research work in implementing a conversational intelligent agent on the web focusing on a top-down natural language query approach. While the present World-Wide Web provides a distributed hypermedia interface to the vast amount of information on the Internet, there is a lack of appropriate metadata to that content. Instead of being a giant library as intended, increasing se...

متن کامل

The Use of Paraphrase Identification in the Retrieval of Appropriate Responses for Script Based Conversational Agents

This paper presents an approach to creating intelligent conversational agents that are capable of returning appropriate responses to natural language input. Our approach consists of using a supervised learning algorithm in combination with different NLP algorithms in training the system to identify paraphrases of the user’s question stored in a database. When tested on a data set consisting of ...

متن کامل

Information Extraction for SQL Query Generation in the Conversation-Based Interfaces to Relational Databases (C-BIRD)

This paper presents a novel methodology of incorporating Information Extraction (IE) techniques into an Enhanced Conversation-Based Interface to Relational Databases (C-BIRD) in order to generate dynamic SQL queries. Conversational Agents can converse with the user in natural language about a specific problem domain. In C-BIRD, such agents allow a user to converse with a relational database in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007