Exact mapping of the d(x(2)-y(2)) Cooper-pair wavefunction onto the spin fluctuations in cuprates: the Fermi surface as a driver for 'high T(c)' superconductivity.

نویسندگان

  • Ross D McDonald
  • Neil Harrison
  • John Singleton
چکیده

We propose that the extraordinarily high superconducting transition temperatures in the cuprates are driven by an exact mapping of the d(x(2)-y(2)) Cooper-pair wavefunction onto the incommensurate spin fluctuations observed in neutron-scattering experiments. This is manifested in the direct correspondence between the inverse of the incommensurability factor δ seen in inelastic neutron-scattering experiments and the measured superconducting coherence length ξ(0). Strikingly, the relationship between ξ(0) and δ is valid for both La(2-x)Sr(x)CuO(4) and YBa(2)Cu(3)O(7-x), suggesting a common mechanism for superconductivity across the entire hole-doped cuprate family. Using data from recent quantum-oscillation experiments in the cuprates, we propose that the fluctuations responsible for superconductivity are driven by a Fermi-surface instability. On the basis of these findings, one can specify the optimal characteristics of a solid that will exhibit 'high T(c)' superconductivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

نظریه میدان میانگین برای ابررسانایی مسی دمای بالا

  Two decades ago the epoch making discovery of high Tc cuprate superconductivity by Bednorz and Müller shocked the world’s superconductivity community. However, already in 1979 and 1980, the first heavy fermion superconductor CeCu2Si2 and organic superconductor (TMTSF)2PF6 have been discovered respectively. Also we know now that all these superconductors are unconventional and nodal. Further t...

متن کامل

Evidence for the presence of the magnetically-mediated superconductivity in hole-doped cuprates

The phase diagram of hole-doped cuprates is discussed. By examining carefully some recent inelastic neutron scattering data obtained on hole-doped cuprates and on a heavy fermion compound UPd2Al3 in which the superconductivity is mediated by spin fluctuations, we conclude that the coherent gap in hole-doped cuprates has most likely the magnetic origin and scales with Tc, on average, as 2∆c/kBTc...

متن کامل

ابررسانایی در کوپراتهای بهینه آلاییده: برنامه BZA به خوبی کار می‌کند و ابر تعادل چسب است

  Resonating valence bond states in a doped Mott insulator was proposed to explain superconductivity in cuprates in January 1987 by Anderson. A challenging task then was proving existence of this unconventional mechanism and a wealth of possibilities, with a rigor acceptable in standard condensed matter physics, in a microscopic theory and develop suitable many body techniques. Shortly, a paper...

متن کامل

ar X iv : c on d - m at / 9 40 70 77 v 2 2 2 Ju l 1 99 4 Antiferromagnetic and van Hove Scenarios for the Cuprates : Taking the Best

A theory for the high temperature superconductors is proposed. Holes are spin-1/2, charge e, quasiparticles strongly dressed by spin fluctuations. Based on their dispersion, it is claimed that the experimentally observed van Hove singularities of the cuprates are likely originated by antiferromagnetic (AF) correlations. From the two carriers problem in the 2D t-J model, an effective Hamiltonian...

متن کامل

Strongly correlated s-wave superconductivity in the N-type infinite-layer cuprate.

Quasiparticle tunneling spectra of the electron-doped ( n-type) infinite-layer cuprate Sr0.9La0.1CuO2 reveal characteristics that counter a number of common phenomena in the hole-doped ( p-type) cuprates. The optimally doped Sr0.9La0.1CuO2 with T(c) = 43 K exhibits a momentum-independent superconducting gap Delta = 13.0+/-1.0 meV that substantially exceeds the BCS value, and the spectral charac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of physics. Condensed matter : an Institute of Physics journal

دوره 21 1  شماره 

صفحات  -

تاریخ انتشار 2009