Modification of Emission Properties of ZnO Layers due to Plasmonic Near-Field Coupling to Ag Nanoislands

نویسندگان

  • Joanna Papierska
  • Bartłomiej S. Witkowski
  • Anastasiya Derkachova
  • Krzysztof P. Korona
  • Johannes Binder
  • Krzysztof Gałkowski
  • Łukasz Wachnicki
  • Marek Godlewski
  • Tomasz Dietl
  • Jan Suffczyński
چکیده

A simple fabrication method of silver (Ag) nanoislands on ZnO films is presented. Continuous wave and time-resolved photoluminescence and transmission are employed to investigate modifications of visible and UV emissions of ZnO brought about by coupling to localized surface plasmons residing on Ag nanoislands. The size of the nanoislands, determining their absorption and scattering efficiencies, is found to be an important factor governing plasmonic modification of optical response of ZnO films. The presence of the Ag nanoislands of appropriate dimensions causes a strong (threefold) increase in emission intensity and up to 1.5 times faster recombination. The experimental results are successfully described by model calculations within the Mie theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced photocatalytic activity of Ag–ZnO hybrid plasmonic nanostructures prepared by a facile wet chemical method

We report the synthesis of Ag-ZnO hybrid plasmonic nanostructures with enhanced photocatalytic activity by a facile wet-chemical method. The structural, optical, plasmonic and photocatalytic properties of the Ag-ZnO hybrid nanostructures were studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), photoluminescence (PL) an...

متن کامل

Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits.

We report direct coupling of plasmonic and photonic nanowires using ultracompact near-field interaction. Photon-plasmon coupling efficiency up to 80% with coupling length down to the 200 nm level is achieved between individual Ag and ZnO nanowires. Hybrid nanophotonic components, including polarization splitters, Mach-Zehnder interferometers, and microring cavities, are fabricated out of couple...

متن کامل

Localized plasmon-engineered spontaneous emission of CdSe/ZnS nanocrystals closely-packed in the proximity of Ag nanoisland films for controlling emission linewidth, peak, and intensity.

Using metallic nanoislands, we demonstrate the localized plasmonic control and modification of the spontaneous emission from closely-packed nanocrystal emitters, leading to significant changes in their collective emission characteristics tuned spectrally and spatially by plasmon coupling. Using randomly-distributed silver nanoislands, we show that the emission linewidth of proximal CdSe/ZnS cor...

متن کامل

Influence of Thickness and Number of Silver Layers in the Electrical and Optical Properties of ZnO/Ag/ZnO/Ag/ZnO ultra-Thin Films Deposited on the Glass for Low-Emissivity Applications

We report on transparent ZnO/Ag/ZnO and ZnO/Ag/ZnO/Ag/ZnO thin-films were deposited on the glass substrate by RF and DC sputtering for ZnO and Ag targets, respectively. The electrical and optical properties of the single and double Low Emissivity coatings were investigated with respect to the deposition time of Ag mid layer. The visible transmittance remains about 65% for single and 45% for...

متن کامل

Enhanced UV Emission From Silver/ZnO And Gold/ZnO Core-Shell Nanoparticles: Photoluminescence, Radioluminescence, And Optically Stimulated Luminescence

The optical properties of core-shell nanoparticles consisting of a ZnO shell grown on Ag and Au nanoparticle cores by a solution method have been investigated. Both the ZnO/Ag and ZnO/Au particles exhibit strongly enhanced near-band-edge UV emission from the ZnO when excited at 325 nm. Furthermore, the UV intensity increases with the metal nanoparticle concentration, with 60-fold and 17-fold en...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013