Homology-Directed Repair of a Defective Glabrous Gene in Arabidopsis With Cas9-Based Gene Targeting
نویسندگان
چکیده
The CRISPR/Cas9 system has emerged as a powerful tool for targeted genome editing in plants and beyond. Double-strand breaks induced by the Cas9 enzyme are repaired by the cell’s own repair machinery either by the non-homologous end joining pathway or by homologous recombination (HR). While the first repair mechanism results in random mutations at the double-strand break site, HR uses the genetic information from a highly homologous repair template as blueprint for repair of the break. By offering an artificial repair template, this pathway can be exploited to introduce specific changes at a site of choice in the genome. However, frequencies of double-strand break repair by HR are very low. In this study, we compared two methods that have been reported to enhance frequencies of HR in plants. The first method boosts the repair template availability through the formation of viral replicons, the second method makes use of an in planta gene targeting (IPGT) approach. Additionally, we comparatively applied a nickase instead of a nuclease for target strand priming. To allow easy, visual detection of HR events, we aimed at restoring trichome formation in a glabrous Arabidopsis mutant by repairing a defective glabrous1 gene. Using this efficient visual marker, we were able to regenerate plants repaired by HR at frequencies of 0.12% using the IPGT approach, while both approaches using viral replicons did not yield any trichome-bearing plants.
منابع مشابه
Optimization of DNA, RNA and RNP Delivery for Efficient Mammalian Cell Engineering Optimization of DNA, RNA and RNP Delivery for Efficient Mammalian Cell Engineering using CRISPR/Cas9
The CRISPR/Cas9 genome-editing platform is a versatile and powerful technology to efficiently create genetically engineered living cells and organisms. This system requires a complex of Cas9 endonuclease protein with a gene-targeting guide RNA (gRNA) to introduce double-strand DNA breaks (DSBs) at specific locations in the genome. The cell then repairs the resulting DSBs using either homology-d...
متن کاملAn Efficient Visual Screen for CRISPR/Cas9 Activity in Arabidopsis thaliana
The CRISPR/Cas9 system enables precision editing of the genome of the model plant Arabidopsis thaliana and likely of any other organism. Tools and methods for further developing and optimizing this widespread and versatile system in Arabidopsis would hence be welcomed. Here, we designed a generic vector system that can be used to clone any sgRNA sequence in a plant T-DNA vector containing an ub...
متن کاملCas9-based genome editing in Arabidopsis and tobacco.
Targeted modification of plant genome is key to elucidating and manipulating gene functions in plant research and biotechnology. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) technology is emerging as a powerful genome-editing method in diverse plants that traditionally lacked facile and versatile tools for targeted genetic engineering. T...
متن کاملKnock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair
CRISPR/Cas9-induced site-specific DNA double-strand breaks (DSBs) can be repaired by homology-directed repair (HDR) or non-homologous end joining (NHEJ) pathways. Extensive efforts have been made to knock-in exogenous DNA to a selected genomic locus in human cells; which, however, has focused on HDR-based strategies and was proven inefficient. Here, we report that NHEJ pathway mediates efficien...
متن کاملHomology-directed dna repair, mitomycin-c resistance, and chromosome stability is restored with correction of a Brca1 mutation.
Chromosomal breaks occur spontaneously as a result of normal DNA metabolism and after exposure to DNA-damaging agents. A major pathway involved in chromosomal double-strand break repair is homologous recombination. In this pathway, a DNA sequence with similarity to a damaged chromosome directs the repair of the damage. The protein products of the hereditary breast cancer susceptibility genes, B...
متن کامل