Role of the outward delayed rectifier K+ current in ceramide-induced caspase activation and apoptosis in cultured cortical neurons.
نویسندگان
چکیده
We studied the novel hypothesis that an up-modulation of channels for outward delayed rectifier K+ current (I(K)) plays a key role in ceramide-induced neuronal apoptosis. Exposure for 6-10 h to the membrane-permeable C2-ceramide (25 microM) or to sphingomyelinase (0.2 unit/ml), but not to the inactive ceramide analogue C2-dihydroceramide (25 microM), enhanced the whole-cell I(K) current without affecting the transient A-type K+ current and increased caspase activity, followed by neuronal apoptosis 24 h after exposure onset. Tetraethylammonium (TEA) or 4-chloro-N,N-diethyl-N-heptylbenzenebutanaminium tosylate (clofilium), at concentrations inhibiting I(K), attenuated the C2-ceramide-induced caspase-3-like activation as well as neuronal apoptosis. Raising extracellular K+ to 25 mM similarly blocked the C2-ceramide-induced cell death; the neuroprotection by 25 mM K+ or TEA was not eliminated by blocking voltage-gated Ca2+ channels. An inhibitor of tyrosine kinases, herbimycin A (10 nM) or lavendustin A (0.1-1 microM), suppressed I(K) enhancement and/or apoptosis induced by C2-ceramide. It is suggested that ceramide-induced I(K) current enhancement is mediated by tyrosine phosphorylation and plays a critical role in neuronal apoptosis.
منابع مشابه
Inhibitory effect of ganglioside GD1b on K+ current in hippocampal neurons and its involvement in apoptosis suppression.
Gangliosides are endogenous membrane components enriched in neuronal cells. They have been shown to play regulatory roles in many cellular processes. Here, we show for the first time that ganglioside GD1b plays an antiapoptotic role in cultured hippocampal neurons. GD1b inhibited the voltage-dependent outward delayed rectifier current (I(K)) but not the transient outward A-type current in a dos...
متن کاملActivation of inwardly-rectifying k+ channels in hypothalamic POMC neurons: role in integrating synaptic and metabolic input
Hypothalamic proopiomelanocortin (POMC) neurons are critical for controlling homeostatic functions in mammals. We used a transgenic mouse model in which the POMC neurons were labeled with enhanced-green fluorescent protein (EGFP) to perform visualized, whole-cell patch recordings from pre-pubertal female hypothalamic slices. The mouse POMC-EGFP neurons expressed the same endogenous conductance ...
متن کاملActivation of inwardly-rectifying k+ channels in hypothalamic POMC neurons: role in integrating synaptic and metabolic input
Hypothalamic proopiomelanocortin (POMC) neurons are critical for controlling homeostatic functions in mammals. We used a transgenic mouse model in which the POMC neurons were labeled with enhanced-green fluorescent protein (EGFP) to perform visualized, whole-cell patch recordings from pre-pubertal female hypothalamic slices. The mouse POMC-EGFP neurons expressed the same endogenous conductance ...
متن کاملExistence of a delayed rectifier K+ current in the membrane of human embryonic stem cel
Introduction: Human embryonic stem cells (hESCs) are pluripotent cells that can proliferate and differentiate to many cell types. Their electrophysiological properties have not yet been chracterzed. In this study, the passive properties (such as resting membrane potential, input resistance and capacitance) and the contribution of delayed rectifier K+ channel currents to the membrane conducta...
متن کاملP 23: Apoptosis Following Cortical Spreading Depression in Juvenile Rats
Introduction: Repetitive cortical spreading depression (CSD) can lead to cell death in immature brain tissue. Caspases are involved in neuronal cell death in several CSD-related neurological disorders. Yet, whether repetitive CSD itself can induce caspase activation in adult or juvenile tissue remains unknown. Inducing repetitive CSD in somatosensory cortices of juvenile and adult rats in vivo,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurochemistry
دوره 73 3 شماره
صفحات -
تاریخ انتشار 1999