Stable Manifolds under Very Weak Hyperbolicity Conditions
نویسندگان
چکیده
We present an argument for proving the existence of local stable and unstable manifolds in a general abstract setting and under very weak hyperbolicity conditions.
منابع مشابه
Lectures on Partial Hyperbolicity and Stable Ergodicity
Weak integrability of the central foliation 56 6. Intermediate Foliations 58 6.1. Non-integrability of intermediate distributions 58 6.2. Invariant families of local manifolds 59 6.3. Insufficient smoothness of intermediate foliations 64 7. Absolute Continuity 69 7.1. The holonomy map 69 7.2. Absolute continuity of local manifolds 75
متن کاملHadamard–perron Theorems and Effective Hyperbolicity
We prove several new versions of the Hadamard–Perron Theorem, which relates infinitesimal dynamics to local dynamics for a sequence of local diffeomorphisms, and in particular establishes the existence of local stable and unstable manifolds. Our results imply the classical Hadamard–Perron Theorem in both its uniform and non-uniform versions, but also apply much more generally. We introduce a no...
متن کاملUniform Hyperbolicity for Random Maps with Positive Lyapunov Exponents
We consider some general classes of random dynamical systems and show that a priori very weak nonuniform hyperbolicity conditions actually imply uniform hyperbolicity.
متن کاملStable ergodicity of dominated systems
We provide a new approach to stable ergodicity of systems with dominated splittings, based on a geometrical analysis of global stable and unstable manifolds of hyperbolic points. Our method suggests that the lack of uniform size of Pesin’s local stable and unstable manifolds — a notorious problem in the theory of non-uniform hyperbolicity — is often less severe than it appeas to be.
متن کاملThe stable manifold theorem for non-linear stochastic systems with memory II. The local stable manifold theorem
We state and prove a Local Stable Manifold Theorem (Theorem 4.1) for non-linear stochastic differential systems with finite memory (viz. stochastic functional differential equations (sfde’s)). We introduce the notion of hyperbolicity for stationary trajectories of sfde’s. We then establish the existence of smooth stable and unstable manifolds in a neighborhood of a hyperbolic stationary traject...
متن کامل