Raman spectroscopy study of the interaction between biogenic polyamines and an alternating AT oligodeoxyribonucleotide.

نویسندگان

  • J Ruiz-Chica
  • M A Medina
  • F Sánchez-Jiménez
  • F J Ramírez
چکیده

The interaction between the 15-mer oligonucleotide d[A(TA)(7)].d[T(AT)(7)] and the three biogenic polyamines, putrescine, spermidine and spermine, under physiological conditions has been studied by Raman spectroscopy. Solutions containing 60 mM (phosphate) of the oligonucleotide and different polyamine concentrations ranging from 1 to 75 mM have been studied. Both natural and heavy water were used as solvents. Difference Raman spectra were computed by subtracting the sum of the separated component spectra from the experimental spectra of the complexes. The Raman data suggested that the interaction of biogenic polyamines with d[A(TA)(7)].d[T(AT)(7)] presents differences related with their sizes and electric charges. Preferential bindings through the oligonucleotide minor groove for putrescine and spermidine were proposed. Spermine would interact by both minor and major grooves, although interaction by the minor groove seems to be more favored. Main reactive sites were thymine-O2 and adenine-N3 atoms at the minor grooves and adenine-N7 and thymine-O4 at the major groove. Electrostatic attractions between the polyamine amino and oligonucleotide phosphodioxy groups were also proposed. Under our experimental conditions, no macromolecular effects on d[A(TA)(7)].d[T(AT)(7)] (changes on secondary or tertiary structures) were detected from Raman spectroscopy, contrary to what happened for GC sequences at the same experimental settings. This fact agrees with the role of the biogenic polyamines during the first steps of the macromolecular synthesis, which involve DNA opening in AT motifs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Raman study of the interaction between polyamines and a GC oligonucleotide.

The interaction between the oligonucleotide d[G(CG)(7)]. d[C(GC)(7)] and the three biogenic polyamines putrescine, spermidine, and spermine under physiological conditions has been studied by Raman spectroscopy. The results indicate the formation of highly ordered aggregated structures in solution, largely stabilized by electrostatic attractions, which have been described as cholesteric phases. ...

متن کامل

Detecting compressive strain by evaluation of Raman spectroscopy of the multiwall Carbon nanotubes/TiO2 nanocomposites

Functionalized Multi-walled carbon nanotubes (f-MWCNTs) which are modified using nitric acid and sulfuric acid were evaluated to synthesize a uniform nanocomposite via application of TiO2. The f-MWCNTs-TiO2 nanocomposites have been produced via using the chemical simple two-step method. To characterize the structural analysis, scanning electron microscopy...

متن کامل

Detection and Characterization of Human Teeth Caries Using 2D Correlation Raman Spectroscopy

Background: Carious lesions are formed by a complex process of chemical interaction between dental enamel and its environment. They can cause cavities and pain, and are expensive to fix. It is hard to characterize in vivo as a result of environment factors and remineralization by ions in the oral cavity. Objectives: The development of a technique that gives early diagnosis which is non-invasi...

متن کامل

Binding of the Biogenic Polyamines to Deoxyribonucleic Acids of Varying Base Composition: Base Specificity and the Associated Energetics of the Interaction

BACKGROUND The thermodynamics of the base pair specificity of the binding of the polyamines spermine, spermidine, putrescine, and cadaverine with three genomic DNAs Clostridium perfringens, 27% GC, Escherichia coli, 50% GC and Micrococcus lysodeikticus, 72% GC have been studied using titration calorimetry and the data supplemented with melting studies, ethidium displacement and circular dichroi...

متن کامل

Common Raman Spectral Markers among Different Tissues for Cancer Detection

Introduction Raman spectroscopy is a vibrational spectroscopic technique, based on inelastic scattering of monochromatic light. This technique can provide valuable information about biomolecular changes, associated with neoplastic transformation. The purpose of this study was to find Raman spectral markers for distinguishing normal samples from cancerous ones in different tissues. Materials and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochimica et biophysica acta

دوره 1628 1  شماره 

صفحات  -

تاریخ انتشار 2003