Two-Dimensional Lattice Boltzmann Model For Compressible Flows With High Mach Number
نویسندگان
چکیده
In this paper we present an improved lattice Boltzmann model for compressible Navier-Stokes system with high Mach number. The model is composed of three components: (i) the discrete-velocity-model by Watari and Tsutahara [Phys Rev E 67,036306(2003)], (ii) a modified Lax-Wendroff finite difference scheme where reasonable dissipation and dispersion are naturally included, (iii) artificial viscosity. The improved model is convenient to compromise the high accuracy and stability. The included dispersion term can effectively reduce the numerical oscillation at discontinuity. The added artificial viscosity helps the scheme to satisfy the von Neumann stability condition. Shock tubes and shock reflections are used to validate the new scheme. In our numerical tests the Mach numbers are successfully increased up to 20 or higher. The flexibility of the new model makes it suitable for tracking shock waves with high accuracy and for investigating nonlinear nonequilibrium complex systems.
منابع مشابه
A preconditioned solver for sharp resolution of multiphase flows at all Mach numbers
A preconditioned five-equation two-phase model coupled with an interface sharpening technique is introduced for simulation of a wide range of multiphase flows with both high and low Mach regimes. Harten-Lax-van Leer-Contact (HLLC) Riemann solver is implemented for solving the discretized equations while tangent of hyperbola for interface capturing (THINC) interface sharpening method is applied ...
متن کاملLattice Boltzmann Approach to High-Speed Compressible Flows
We present an improved lattice Boltzmann model for high-speed compressible flows. The model is composed of a discrete-velocity model by Kataoka and Tsutahara [Phys. Rev. E 69, 056702 (2004)] and an appropriate finite-difference scheme combined with an additional dissipation term. With the dissipation term parameters in the model can be flexibly chosen so that the von Neumann stability condition...
متن کاملParallel Simulation of Compressible Fluid Dynamics Using Lattice Boltzmann Method∗
The Lattice Boltzmann Method (LBM) has numerous computational advantages, such as the simplicity of programming, the ability to incorporate microscopic interactions, and the easy parallelization of algorithms. The traditional lattice Boltzmann model has a constraint of small mach number(the velocity of fluid must be less than 0.3 mach). This paper presents a novel lattice Boltzmann method to si...
متن کاملMultiple-Relaxation-Time Lattice Boltzmann Approach to Compressible Flows with Flexible Specific-Heat Ratio and Prandtl Number
A new multiple-relaxation-time lattice Boltzmann scheme for compressible flows with arbitrary specific heat ratio and Prandtl number is presented. In the new scheme, which is based on a two-dimensional 16-discrete-velocity model, the kinetic moment space and the corresponding transformation matrix are constructed according to the seven-moment relations associated with the local equilibrium dist...
متن کاملThree-dimensional characteristic approach for incompressible thermo-flows and influence of artificial compressibility parameter
In this paper the characteristics of unsteady three-dimensional incompressible flows with heat transfer are obtained along with artificial compressibility of Chorin. At first, compatibility equations and pseudo characteristics for three-dimensional flows are derived from five governing equations (continuity equation, Momentum equations in three directions, and energy equation) and then results ...
متن کامل