Generating mid-IR octave-spanning supercontinua and few-cycle pulses with solitons in phase-mismatched quadratic nonlinear crystals
نویسندگان
چکیده
We discuss a novel method for generating octave-spanning supercontinua and few-cycle pulses in the important mid-IR wavelength range. The technique relies on strongly phase-mismatched cascaded second-harmonic generation (SHG) in mid-IR nonlinear frequency conversion crystals. Importantly we here investigate the so-called noncritical SHG case, where no phase matching can be achieved but as a compensation the largest quadratic nonlinearities are exploited. A self-defocusing temporal soliton can be excited if the cascading nonlinearity is larger than the competing material self-focusing nonlinearity, and we define a suitable figure of merit to screen a wide range of mid-IR dielectric and semiconductor materials with large effective second-order nonlinearities deff. The best candidates have simultaneously a large bandgap and a large deff. We show selected realistic numerical examples using one of the promising crystals: in one case soliton pulse compression from 50 fs to 15 fs (1.5 cycles) at 3.0 μm is achieved, and at the same time a 3-cycle dispersive wave at 5.0 μm is formed that can be isolated using a long-pass filter. In another example we show that extremely broadband supercontinua can form spanning the near-IR to the end of the mid-IR (nearly 4 octaves). © 2013 Optical Society of America OCIS codes: (320.5520) Pulse compression; (320.7110) Ultrafast nonlinear optics; (190.5530) Pulse propagation and temporal solitons; (190.2620) Harmonic generation and mixing; (320.2250) Femtosecond phenomena. References and links 1. H. J. Bakker, Y. L. A. Rezus, and R. L. A. Timmer, “Molecular reorientation of liquid water studied with femtosecond midinfrared spectroscopy,” J. Phys. Chem. A 112, 11523–11534 (2008). 2. M. Rini, R. Tobey, N. Dean, J. Itatani, Y. Tomioka, Y. Tokura, R. W. Schoenlein, and A. Cavalleri, “Control of the electronic phase of a manganite by mode-selective vibrational excitation,” Nature 449, 72–74 (2007). 3. D. Brida, M. Marangoni, C. Manzoni, S. D. Silvestri, and G. Cerullo, “Two-optical-cycle pulses in the midinfrared from an optical parametric amplifier,” Opt. Lett. 33, 2901–2903 (2008). 4. S. Ashihara, T. Mochizuki, S. Yamamoto, T. Shimura, and K. Kuroda, “Generation of sub 50-fs mid-infrared pulses by optical parametric amplifier based on periodically-poled MgO:LiNbO3 ,” Jap. Journ. Appl. Phys. 48, 042501 (2009). 5. S. Ashihara and Y. Kawahara, “Spectral broadening of mid-infrared femtosecond pulses in GaAs,” Opt. Lett. 34, 3839–3841 (2009). #192344 $15.00 USD Received 17 Jun 2013; revised 30 Aug 2013; accepted 30 Aug 2013; published 12 Sep 2013 (C) 2013 OSA 1 October 2013 | Vol. 3, No. 10 | DOI:10.1364/OME.3.001647 | OPTICAL MATERIALS EXPRESS 1647 6. P. B. Corkum, P. P. Ho, R. R. Alfano, and J. T. Manassah, “Generation of infrared supercontinuum covering 3–14 μm in dielectrics and semiconductors,” Opt. Lett. 10, 624–626 (1985). 7. F. Silva, D. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nature Comms. 3, 807 (2012). 8. T. Fuji and T. Suzuki, “Generation of sub-two-cycle mid-infrared pulses by four-wave mixing through filamentation in air,” Opt. Lett. 32, 3330–3332 (2007). 9. P. B. Petersen and A. Tokmakoff, “Source for ultrafast continuum infrared and terahertz radiation,” Opt. Lett. 35, 1962–1964 (2010). 10. O. Chalus, A. Thai, P. K. Bates, and J. Biegert, “Six-cycle mid-infrared source with 3.8 μJ at 100 kHz,” Opt. Lett. 35, 3204–3206 (2010). 11. G. Andriukaitis, T. Balčiūnas, S. Ališauskas, A. Pugžlys, A. Baltuška, T. Popmintchev, M.-C. Chen, M. M. Murnane, and H. C. Kapteyn, “90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier,” Opt. Lett. 36, 2755–2757 (2011). 12. P. Moulton and E. Slobodchikov, “1-GW-peak-power, Cr:ZnSe laser,” in “CLEO:2011 Laser Applications to Photonic Applications,” (Optical Society of America, 2011), p. PDPA10. 13. P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71, 1994–1997 (1993). 14. T. Popmintchev, M.-C. Chen, P. Arpin, M. M. Murnane, and H. C. Kapteyn, “The attosecond nonlinear optics of bright coherent x-ray generation,” Nat. Photon. 4, 822–832 (2010). 15. B. B. Zhou, A. Chong, F. W. Wise, and M. Bache, “Ultrafast and octave-spanning optical nonlinearities from strongly phase-mismatched quadratic interactions,” Phys. Rev. Lett. 109, 043902 (2012). 16. L. A. Ostrovskii, “Self-action of light in crystals,” Pisma Zh. Eksp. Teor. Fiz. 5, 331 (1967). [JETP Lett. 5, 272-275 (1967)]. 17. J. M. R. Thomas and J. P. E. Taran, “Pulse distortions in mismatched second harmonic generation,” Opt. Commun. 4, 329 – 334 (1972). 18. R. DeSalvo, D. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett. 17, 28–30 (1992). 19. M. L. Sundheimer, C. Bosshard, E. W. V. Stryland, G. I. Stegeman, and J. D. Bierlein, “Large nonlinear phase modulation in quasi-phase-matched ktp waveguides as a result of cascaded second-order processes,” Opt. Lett. 18, 1397–1399 (1993). 20. X. Liu, L.-J. Qian, and F. W. Wise, “High-energy pulse compression by use of negative phase shifts produced by the cascaded χ(2) : χ(2) nonlinearity,” Opt. Lett. 24, 1777–1779 (1999). 21. S. Ashihara, J. Nishina, T. Shimura, and K. Kuroda, “Soliton compression of femtosecond pulses in quadratic media,” J. Opt. Soc. Am. B 19, 2505–2510 (2002). 22. M. Bache, O. Bang, J. Moses, and F. W. Wise, “Nonlocal explanation of stationary and nonstationary regimes in cascaded soliton pulse compression,” Opt. Lett. 32, 2490–2492 (2007). 23. D. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, Berlin, 2005). 24. V. Kemlin, B. Boulanger, V. Petrov, P. Segonds, B. Ménaert, P. G. Schunneman, and K. T. Zawilski, “Nonlinear, dispersive, and phase-matching properties of the new chalcopyrite CdSiP2 [invited],” Opt. Mater. Express 1, 1292–1300 (2011). 25. S. Das, G. C. Bhar, S. Gangopadhyay, and C. Ghosh, “Linear and nonlinear optical properties of zngep2 crystal for infrared laser device applications: Revisited,” Appl. Opt. 42, 4335–4340 (2003). 26. O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3 ,” Appl. Phys. B 91, 343–348 (2008). 27. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997). 28. V. Petrov, F. Noack, I. Tunchev, P. Schunemann, and K. Zawilski, “The nonlinear coefficient d36 of CdSiP2 ,” Proc. SPIE 7197, 71970M–71970M–8 (2009). 29. S. Avanesov, V. Badikov, A. Tyazhev, D. Badikov, V. Panyutin, G. Marchev, G. Shevyrdyaeva, K. Mitin, F. Noack, P. Vinogradova, N. Schebetova, V. Petrov, and A. Kwasniewski, “PbIn6Te10: new nonlinear crystal for three-wave interactions with transmission extending from 1.7 to 25 μm,” Opt. Mater. Express 1, 1286–1291 (2011). 30. R. Santos-Ortiz, E. Tupitsyn, I. Nieves, P. Bhattacharya, and A. Burger, “Growth improvement and characterization of AgGaxIn1−xSe2 chalcopyrite crystals using the horizontal Bridgman technique,” Journal of Crystal Growth 314, 293 – 297 (2011). 31. H. Li, C. Kam, Y. Lam, F. Zhou, and W. Ji, “Nonlinear refraction of undoped and Fe-doped KTiOAsO4 crystals in the femtosecond regime,” Applied Physics B 70, 385–388 (2000). 32. M. Jazbinsek, L. Mutter, and P. Gunter, “Photonic applications with the organic nonlinear optical crystal DAST,” Selected Topics in Quantum Electronics, IEEE Journal of 14, 1298 –1311 (2008). 33. K. Jagannathan and S. Kalainathan, “Growth and characterization of 4-dimethylamino-N-methyl 4-stilbazolium tosylate (DAST) single crystals grown by nucleation reduction method,” Mater. Res. Bull. 42, 1881 – 1887 (2007). 34. X. Lin, G. Zhang, and N. Ye, “Growth and characterization of BaGa4S7: A new crystal for mid-IR nonlinear #192344 $15.00 USD Received 17 Jun 2013; revised 30 Aug 2013; accepted 30 Aug 2013; published 12 Sep 2013 (C) 2013 OSA 1 October 2013 | Vol. 3, No. 10 | DOI:10.1364/OME.3.001647 | OPTICAL MATERIALS EXPRESS 1648 optics,” Crystal Growth & Design 9, 1186–1189 (2009). 35. W. Ettoumi, Y. Petit, J. Kasparian, and J.-P. Wolf, “Generalized Miller formulæ,” Opt. Express 18, 6613–6620 (2010). 36. M. Sheik-Bahae and E. W. V. Stryland, “Optical nonlinearities in the transparency region of bulk semiconductors,” in “Nonlinear Optics in Semiconductors I,” , vol. 58 of Semiconductors and Semimetals, E. Garmire and A. Kost, eds. (Elsevier, 1998), chap. 4, pp. 257 – 318. 37. R. DeSalvo, A. A. Said, D. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996). 38. M. Bache, J. Moses, and F. W. Wise, “Scaling laws for soliton pulse compression by cascaded quadratic nonlinearities,” J. Opt. Soc. Am. B 24, 2752–2762 (2007). [erratum: ibid., 27, 2505 (2010)]. 39. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2007), 4th ed. 40. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135 (2006). 41. M. Bache, O. Bang, W. Krolikowski, J. Moses, and F. W. Wise, “Limits to compression with cascaded quadratic soliton compressors,” Opt. Express 16, 3273–3287 (2008). 42. M. Bache, O. Bang, B. B. Zhou, J. Moses, and F. W. Wise, “Optical Cherenkov radiation in ultrafast cascaded second-harmonic generation,” Phys. Rev. A 82, 063806 (2010). 43. M. Bache, O. Bang, B. B. Zhou, J. Moses, and F. W. Wise, “Optical Cherenkov radiation by cascaded nonlinear interaction: an efficient source of few-cycle energetic nearto mid-IR pulses,” Opt. Express 19, 22557–22562 (2011). 44. S. Fossier, S. Salaün, J. Mangin, O. Bidault, I. Thénot, J.-J. Zondy, W. Chen, F. Rotermund, V. Petrov, P. Petrov, J. Henningsen, A. Yelisseyev, L. Isaenko, S. Lobanov, O. Balachninaite, G. Slekys, and V. Sirutkaitis, “Optical, vibrational, thermal, electrical, damage, and phase-matching properties of lithium thioindate,” J. Opt. Soc. Am. B 21, 1981–2007 (2004). 45. J. Moses and F. W. Wise, “Soliton compression in quadratic media: high-energy few-cycle pulses with a frequency-doubling crystal,” Opt. Lett. 31, 1881–1883 (2006). 46. M. H. Frosz, “Validation of input-noise model for simulations of supercontinuum generation and rogue waves,” Opt. Express 18, 14778–14787 (2010). 47. W. J. Tomlinson, R. H. Stolen, and A. M. Johnson, “Optical wave breaking of pulses in nonlinear optical fibers,” Opt. Lett. 10, 457–459 (1985). 48. T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3282–3285 (1997). 49. H. Guo, X. Zeng, B. Zhou, and M. Bache, “Nonlinear wave equation in frequency domain: accurate modeling of ultrafast interaction in anisotropic nonlinear media,” J. Opt. Soc. Am. B 30, 494–504 (2013).
منابع مشابه
Ultrafast and octave-spanning optical nonlinearities from strongly phase-mismatched quadratic interactions.
Cascaded nonlinearities have attracted much interest, but ultrafast applications have been seriously hampered by the simultaneous requirements of being near phase matching and having ultrafast femtosecond response times. Here we show that in strongly phase-mismatched nonlinear frequency conversion crystals the pump pulse can experience a large and extremely broadband self-defocusing cascaded Ke...
متن کاملSupercontinuum generation in quadratic nonlinear waveguides without quasi-phase matching.
Supercontinuum generation (SCG) is most efficient when the solitons can be excited directly at the pump laser wavelength. Quadratic nonlinear waveguides may induce an effective negative Kerr nonlinearity, so temporal solitons can be directly generated in the normal (positive) dispersion regime overlapping with common ultrafast laser wavelengths. There is no need for waveguide dispersion enginee...
متن کاملEnergetic mid-IR femtosecond pulse generation by self-defocusing soliton-induced dispersive waves in a bulk quadratic nonlinear crystal.
Generating energetic femtosecond mid-IR pulses is crucial for ultrafast spectroscopy, and currently relies on parametric processes that, while efficient, are also complex. Here we experimentally show a simple alternative that uses a single pump wavelength without any pump synchronization and without critical phase-matching requirements. Pumping a bulk quadratic nonlinear crystal (unpoled LiNbO(...
متن کاملMid-IR femtosecond frequency conversion by soliton-probe collision in phase-mismatched quadratic nonlinear crystals.
We show numerically that ultrashort self-defocusing temporal solitons colliding with a weak pulsed probe in the near-IR can convert the probe to the mid-IR. A near-perfect conversion efficiency is possible for a high effective soliton order. The near-IR self-defocusing soliton can form in a quadratic nonlinear crystal (beta-barium borate) in the normal dispersion regime due to cascaded (phase-m...
متن کاملNonlinear Group IV photonics based on silicon and germanium: from near-infrared to mid-infrared
Group IV photonics hold great potential for nonlinear applications in the nearand mid-infrared (IR) wavelength ranges, exhibiting strong nonlinearities in bulk materials, high index contrast, CMOS compatibility, and cost-effectiveness. In this paper, we review our recent numerical work on various types of silicon and germanium waveguides for octave-spanning ultrafast nonlinear applications. We ...
متن کامل