Ab initio molecular dynamics simulations of aqueous triflic acid confined in carbon nanotubes.
نویسندگان
چکیده
Ab initio molecular dynamics simulations were performed to investigate the effects of nanoscale confinement on the structural and dynamical properties of aqueous triflic acid (CF3SO3H). Single-walled carbon nanotubes (CNTs) with diameters ranging from ∼11 to 14 Å were used as confinement vessels, and the inner surface of the CNT were either left bare or fluorinated to probe the influence of the confined environment on structural and dynamical properties of the water and triflic acidic. The systems were simulated at hydration levels of n = 1-3 H2O/CF3SO3H. Proton dissociation expectedly increased with increasing hydration. Along with the level of hydration, hydrogen bond connectivity between the triflic acid molecules, both directly and via a single water molecule, played a role on proton dissociation. Direct hydrogen bonding between the CF3SO3H molecules, most commonly found in the larger bare CNT, also promoted interactions between water molecules allowing for greater separation of the dissociated protons from the CF3SO3(-) as the hydration level was increased. However, this also resulted in a decrease in the overall proportion of dissociated protons. The confinement dimensions altered both the hydrogen bond network and the distribution of water molecules where the H2O in the fluorinated CNTs tended to form small clusters with less proton dissociation at n = 1 and 2 but the highest at n = 3. In the absence of nearby hydrogen bond accepting sites from H2O or triflic acid SO3H groups, the water molecules formed weak hydrogen bonds with the fluorine atoms. In the bare CNT systems, these involved the CF3 groups of triflic acid and were more frequently observed when direct hydrogen bonding between CF3SO3H hindered potential hydrogen bonding sites. In the fluorinated tubes, interactions with the covalently bound fluorine atoms of the CNT wall dominated which appear to stabilize the hydrogen bond network. Increasing the hydration level increased the frequency of the OH···F (CNT) hydrogen bonding which was highly pronounced in the smaller fluorinated CNT indicating an influence on the confinement dimensions on these interactions.
منابع مشابه
Amino acids interacting with defected carbon nanotubes: ab initio calculations
The adsorption of a number of amino acids on a defected single-walled carbon nanotube (SWCNT) isinvestigated by using the density-functional theory (DFT) calculations. The adsorption energies andequilibrium distances are calculated for various configurations such as amino acid attaching to defectsites heptagon, pentagon and hexagon in defective tube and also for several molecular orientationswi...
متن کاملAb initio molecular dynamics simulations of water and an excess proton in water confined in carbon nanotubes.
Ab initio molecular dynamics simulations were performed to investigate the effects of nanoscale confinement on the structural and dynamical properties of water and slightly acidic water. Single-walled carbon nanotubes (CNTs) of two different diameters (11.0 and 13.3 Å) were used as confinement vessels, and the inner walls of the CNT were either left bare or fluorinated to explore the influence ...
متن کاملBias-dependent amino-acid-induced conductance changes in short semi-metallic carbon nanotubes.
We study the interaction between short semi-metallic carbon nanotubes and different amino acids using molecular dynamics and ab initio (density functional theory/non-equilibrium Green's function) simulations. We identify two different mechanisms of nanotube conductance change upon adsorption of amino acids: one due to the change of the coordinates of the nanotube arising from van der Waals forc...
متن کاملMicroscopic origin of current degradation of fully-sealed carbon-nanotube field emission display
The current-degradation mechanism of a fully sealed, carbon-nanotube field emission display is investigated experimentally and theoretically. From residual gas analysis, it is strongly evidenced that CH3 radicals from the organic materials in the paste deteriorate emission properties. Based on ab initio methods, it is found that CH3 radicals can increase electrical resistance of the nanotube an...
متن کاملDiscussion on carbon precursor dissociation at initial stage of carbon nanotube growth
The growth mechanism of carbon nanotubes (CNT) has been widely discussed both from experimental and computational studies. Regarding the computational studies, most of the studies focuses on the aggregation of isolate carbon atoms on the catalytic metal nanoparticle, whereas the initial dissociation of carbon source molecules should affect the yield and quality of the products [1]. Under such c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 16 31 شماره
صفحات -
تاریخ انتشار 2014