Spatial and temporal modeling of large-scale brain networks

نویسنده

  • Mahshid Najafi
چکیده

Title of dissertation: SPATIAL AND TEMPORAL MODELING OF LARGE-SCALE BRAIN NETWORKS Mahshid Najafi, Doctor of Philosophy, 2017 Dissertation directed by: Professor Jonathan Z. Simon, Department of Electrical and Computer Engineering Professor Luiz Pessoa, Department of Psychology The human brain is the most fascinating and complex organ. It directs all our actions and thoughts. Despite the large body of brain studies, little is known about the neural basis of its large-scale structure. In this dissertation, I take advantage of several network-based and statistical techniques to investigate the spatial and temporal aspects of large-scale functional networks of the human brain during “rest” and “task” conditions using functional MRI data. Large-scale analysis of human brain function has revealed that brain regions can be grouped into networks or communities. Most studies adopt a framework in which brain regions belong to only one community. Yet studies in general fields of knowledge suggest that in most cases complex networks consist of interwoven sets of overlapping communities. A mixed-membership framework can better characterize the complex networks. In this dissertation, I employed a mixed-membership Bayesian model to characterize overlapping community structure of the brain at both “rest” and “task” conditions. The approach allowed us to quantify how task performance reconfigures brain communities at rest, and determine the relationship between functional diversity (how diverse is a region’s functional activation repertoire) and membership diversity (how diverse is a region’s affiliation to communities). Furthermore, I could study the distribution of key regions, named “bridges”, in transferring information across the brain communities. Our findings revealed that the overlapping framework described the brain in ways that were not captured by disjoint clustering, and thus provided a richer landscape of large-scale brain networks. Overall, I suggest that overlapping networks are better suited to capture the flexible and task-dependent mapping between brain regions and their functions. Finally, I developed a dynamic intersubject network analysis technique to study the temporal changes of the emotional brain at the level of large-scale brain networks by formulating a manipulation in which threat levels varied continuously during the experiment. Our results illustrate that cohesion within and between networks changed dynamically with threat level. Together, our findings reveal that characterizing emotional processing should be done at the level of distributed networks, and not simply at the level of evoked responses in specific brain regions. SPATIAL AND TEMPORAL MODELING OF LARGE-SCALE BRAIN NETWORKS

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Review of Spatial Factor Modeling Techniques in Recommending Point of Interest Using Location-based Social Network Information

The rapid growth of mobile phone technology and its combination with various technologies like GPS has added location context to social networks and has led to the formation of location-based social networks. In social networking sites, recommender systems are used to recommend points of interest (POIs) to users. Traditional recommender systems, such as film and book recommendations, have a lon...

متن کامل

Improving the Izhikevich Model Based on Rat Basolateral Amygdala and Hippocampus Neurons, and Recognizing Their Possible Firing Patterns

Introduction: Identifying the potential firing patterns following different brain regions under normal and abnormal conditions increases our understanding of events at the level of neural interactions in the brain. Furthermore, it is important to be capable of modeling the potential neural activities to build precise artificial neural networks. The Izhikevich model is one of the simplest biolog...

متن کامل

Determination of Spatial-Temporal Correlation Structure of Troposphere Ozone Data in Tehran City

Spatial-temporal modeling of air pollutants, ground-level ozone concentrations in particular, has attracted recent attention because by using spatial-temporal modeling, can analyze, interpolate or predict ozone levels at any location. In this paper we consider daily averages of troposphere ozone over Tehran city. For eliminating the trend of data, a dynamic linear model is used, then some featu...

متن کامل

Bursty properties revealed in large-scale brain networks with a point-based method for dynamic functional connectivity

The brain is organized into large scale spatial networks that can be detected during periods of rest using fMRI. The brain is also a dynamic organ with activity that changes over time. We developed a method and investigated properties where the connections as a function of time are derived and quantified. The point based method (PBM) presented here derives covariance matrices after clustering i...

متن کامل

Modeling of spatio-temporal of albedo over Iran

The aim of this study is modeling spatiotemporal variations of albedo. This study was conducted using simultaneous effects of several components, such as wetness of surface layer of soil, cloudiness, topography and vegetation density (NDVI), using MEERA2 model with a resolution of 50 in 50 km during 2000-2010 in Iran. The results of spatial analysis of albedo values in Iran showed that the high...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017