How Does the VSG Coat of Bloodstream Form African Trypanosomes Interact with External Proteins?

نویسندگان

  • Angela Schwede
  • Olivia J. S. Macleod
  • Paula MacGregor
  • Mark Carrington
  • Marc-Jan Gubbels
چکیده

Variations on the statement "the variant surface glycoprotein (VSG) coat that covers the external face of the mammalian bloodstream form of Trypanosoma brucei acts a physical barrier" appear regularly in research articles and reviews. The concept of the impenetrable VSG coat is an attractive one, as it provides a clear model for understanding how a trypanosome population persists; each successive VSG protects the plasma membrane and is immunologically distinct from previous VSGs. What is the evidence that the VSG coat is an impenetrable barrier, and how do antibodies and other extracellular proteins interact with it? In this review, the nature of the extracellular surface of the bloodstream form trypanosome is described, and past experiments that investigated binding of antibodies and lectins to trypanosomes are analysed using knowledge of VSG sequence and structure that was unavailable when the experiments were performed. Epitopes for some VSG monoclonal antibodies are mapped as far as possible from previous experimental data, onto models of VSG structures. The binding of lectins to some, but not to other, VSGs is revisited with more recent knowledge of the location and nature of N-linked oligosaccharides. The conclusions are: (i) Much of the variation observed in earlier experiments can be explained by the identity of the individual VSGs. (ii) Much of an individual VSG is accessible to antibodies, and the barrier that prevents access to the cell surface is probably at the base of the VSG N-terminal domain, approximately 5 nm from the plasma membrane. This second conclusion highlights a gap in our understanding of how the VSG coat works, as several plasma membrane proteins with large extracellular domains are very unlikely to be hidden from host antibodies by VSG.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

African trypanosomes: the genome and adaptations for immune evasion.

The African trypanosome Trypanosoma brucei is a flagellated unicellular parasite transmitted by tsetse flies that causes African sleeping sickness in sub-Saharan Africa. Trypanosomes are highly adapted for life in the hostile environment of the mammalian bloodstream, and have various adaptations to their cell biology that facilitate immune evasion. These include a specialized morphology, with m...

متن کامل

A new approach to chemotherapy: drug-induced differentiation kills African trypanosomes

Human African trypanosomiasis (sleeping sickness) is a neglected tropical disease caused by Trypanosoma brucei spp. The parasites are transmitted by tsetse flies and adapt to their different hosts and environments by undergoing a series of developmental changes. During differentiation, the trypanosome alters its protein coat. Bloodstream form trypanosomes in humans have a coat of variant surfac...

متن کامل

Active VSG expression sites in Trypanosoma brucei are depleted of nucleosomes.

African trypanosomes regulate transcription differently from other eukaryotes. Most of the trypanosome genome is constitutively transcribed by RNA polymerase II (Pol II) as large polycistronic transcription units while the genes encoding the major surface proteins are transcribed by RNA polymerase I (Pol I). In bloodstream form Trypanosoma brucei, the gene encoding the variant surface glycoprot...

متن کامل

A novel ISWI is involved in VSG expression site downregulation in African trypanosomes.

African trypanosomes show monoallelic expression of one of about 20 telomeric variant surface glycoprotein (VSG) gene-expression sites (ESs) while multiplying in the mammalian bloodstream. We screened for genes involved in ES silencing using flow cytometry and RNA interference (RNAi). We show that a novel member of the ISWI family of SWI2/SNF2-related chromatin-remodelling proteins (TbISWI) is ...

متن کامل

Maintaining the protective variant surface glycoprotein coat of African trypanosomes.

The African trypanosome Trypanosoma brucei has a precarious existence as an extracellular parasite of the mammalian bloodstream, where it is faced with continuous immune attack. Key to survival is a dense VSG (variant surface glycoprotein) coat, which is repeatedly switched during the course of a chronic infection. New data demonstrate a link between VSG synthesis and cell cycle progression, in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2015