Reduction Methods for Approximate Solution of the Singular Integro-Differential Equations in Lebesgue Spaces

نویسندگان

  • Iurie Caraus
  • Nikos E. Mastorakis
چکیده

We have elaborated the numerical schemes of reduction method by FaberLaurent polynomials for the approximate solution of system of singular integrodifferential equations. The equations are defined on the arbitrary smooth closed contour. The theoretical foundation has been obtained in Lebesgue spaces. Key–Words: singular integrodifferential equations, reduction method, Lebesgue spaces

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The reduction method for approximative solution of systems of Singular Integro-Differential Equations in Lebesgue spaces(case γ 6= 0)

Abstract: In this article we have elaborated the numerical schemes of reduction methods for approximate solution of system of singular integro-differential equations when the kernel has a weak singularity. The equations are defined on the arbitrary smooth closed contour of complex plane. We suggest the numerical schemes of the reduction method over the system of Faber-Laurent polynomials for th...

متن کامل

The Legendre Wavelet Method for Solving Singular Integro-differential Equations

In this paper, we present Legendre wavelet method to obtain numerical solution of a singular integro-differential equation. The singularity is assumed to be of the Cauchy type. The numerical results obtained by the present method compare favorably with those obtained by various Galerkin methods earlier in the literature.

متن کامل

Application of Tau Approach for Solving Integro-Differential Equations with a Weakly Singular Kernel

In this work, the convection-diffusion integro-differential equation with a weakly singular kernel is discussed. The  Legendre spectral tau method is introduced for finding the unknown function. The proposed method is based on expanding the approximate solution as the elements of a shifted Legendre polynomials. We reduce the problem to a set of algebraic equations by using operational matrices....

متن کامل

Approximate Solution of Systems of Singular Integro- Differential Equations by Reduction Method in Generalized Holder spaces

The computation schemes of reduction method for approximate solution of systems of singular integrodifferential equations have been elaborated. The equations are defined on an arbitrary smooth closed contour of complex plane. Estimates of the rate of convergence are obtained in generalized Hölder spaces. Key–Words:Reduction Method, Generalized Holder Spaces, systems of singular integro-differen...

متن کامل

Modified Laplace decomposition method for fractional Volterra-Fredholm integro-differential equations

This paper successfully applies the Adomian decomposition  and the modified Laplace Adomian decomposition methods to find  the approximate solution of a nonlinear fractional Volterra-Fredholm integro-differential equation. The reliability of the methods and reduction in the size of the computational work give these methods a wider applicability. Also, the behavior of the solution can be formall...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009