Nilpotent symmetries for a spinning relativistic particle in augmented superfield formalism

نویسنده

  • R. P. Malik
چکیده

The local, covariant, continuous, anticommuting and nilpotent Becchi-RouetStora-Tyutin (BRST) and anti-BRST symmetry transformations for all the fields of a (0 + 1)-dimensional spinning relativistic particle are obtained in the framework of augmented superfield approach to BRST formalism. The trajectory of this super-particle, parametrized by a monotonically increasing evolution parameter τ , is embedded in a Ddimensional flat Minkowski spacetime manifold. This physically useful one-dimensional system is considered on a three (1 + 2)-dimensional supermanifold which is parametrized by an even element (τ) and a couple of odd elements (θ and θ̄) of the Grassmann algebra. Two anticommuting sets of (anti-)BRST symmetry transformations, corresponding to the underlying (super)gauge symmetries for the above system, are derived in the framework of augmented superfield formulation where (i) the horizontality condition, and (ii) the invariance of conserved quantities on the (super)manifolds play decisive roles. Geometrical interpretations for the above nilpotent symmetries (and their generators) are provided.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : h ep - t h / 05 06 10 9 v 1 1 4 Ju n 20 05 Nilpotent Symmetries For A Spinning Relativistic Particle In Augmented Superfield Formalism

The local, covariant, continuous, anticommuting and nilpotent Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations for all the fields of a (0 + 1)-dimensional spinning relativistic particle are obtained in the framework of augmented superfield approach to BRST formalism. The trajectory of this super-particle is parametrized by a monotonically increasing parameter τ that is em...

متن کامل

Nilpotent Symmetries for a Free Relativistic Particle in Augmented Superfield Formalism

The local, covariant, continuous and off-shell (as well as on-shell) nilpotent (anti-)BRST symmetry transformations are derived for a one (0+1)-dimensional free scalar relativistic particle in the framework of newly proposed augmented superfield formalism. The trajectory (i.e. the world-line) of the free particle, parametrized by a monotonically varying evolution parameter τ , is embedded in a ...

متن کامل

Nilpotent symmetries for a free relativistic particle in superfield formalism

The local, covariant, continuous and off-shell (as well as on-shell) nilpotent (anti-)BRST symmetry transformations are derived for a one (0+1)-dimensional free scalar relativistic particle in the framework of superfield formalism. The trajectory (i.e. the worldline) of the free particle, parametrized by a monotonically varying evolution parameter τ , is embedded in aD-dimensional flat Minkowsk...

متن کامل

Augmented superfield approach to unique nilpotent symmetries for complex scalar fields in QED

The derivation of the exact and unique nilpotent Becchi-Rouet-Stora-Tyutin (BRST)and anti-BRST symmetries for the matter fields, present in any arbitrary interacting gauge theory, has been a long-standing problem in the framework of superfield approach to BRST formalism. These nilpotent symmetry transformations are deduced for the four (3 + 1)-dimensional (4D) complex scalar fields, coupled to ...

متن کامل

Augmented Superfield Approach To Unique Nilpotent Symmetries For Complex Scalar Fields In QED

The derivation of the exact and unique nilpotent Becchi-Rouet-Stora-Tyutin (BRST)and anti-BRST symmetries for the matter fields, present in any arbitrary interacting gauge theory, has been a long-standing problem in the framework of superfield approach to BRST formalism. These nilpotent symmetry transformations are deduced for the four (3 + 1)-dimensional (4D) complex scalar fields, coupled to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005