Analysis of complex polymers by multidetector field-flow fractionation.
نویسندگان
چکیده
Field-flow fractionation (FFF) is a powerful alternative to column-based polymer fractionation methods such as size-exclusion chromatography (SEC) or interaction chromatography (IC). The most common polymer fractionation method, SEC, has its limitations when polymers with very high molar masses or complex structures must be analysed. Another limitation of all column-based methods is that the samples must be filtered before analysis and shear degradation of large macromolecules may be caused by the stationary phase and/or the column frits. Finally, the separation of very polar polymers may be a challenge because such polymers interact very strongly with the stationary phase, causing irreversible adsorption or other negative effects. This article reviews the latest developments in field-flow fractionation of complex polymers. It is demonstrated that some of the limitations of column-based chromatography can be overcome by FFF. When appropriate, results from column-based fractionations are compared with those from FFF fractionations to highlight the specific merits and challenges of each method. In addition to the fractionations themselves, various detector setups are discussed to show that different polymer distributions require different experimental procedures. Examples are given of the analysis of molar mass distribution, chemical composition, and microstructure. Advanced detector combinations are discussed, most prominently the very recently developed coupling to (1)H NMR. Finally, analysis of polymer nanocomposites by asymmetric flow field-flow fractionation (AF4)-FTIR is presented.
منابع مشابه
Field-flow Fractionation of Polymers: One-phase Chromatography
Field-flow fractionation (FFF) is introduced as a one-phase chromatographic system utilizing an external field to differentially retain high molecular weight polymeric and particulate species. The principles and theory of FFF are described. FFF and exclusion chromatography are then compared on the basis of their underlying separative mechanisms, and the way that these mechanisms influence and l...
متن کاملThermal Field-Flow Fractionation of Acrylic Copolymers
A new thermal field-flow fractionation (ThFFF) method has been developed for the separation and analysis of polyacrylates and acrylic-styrene copolymers. This important class of polymers is commonly used as pressure sensitive adhesives, in coatings and paintings, and as the basis for polyelectrolyte materials. The structure and chemical composition of these polymers play a vital role in the end...
متن کاملField-flow fractionation of proteins, polysaccharides, synthetic polymers, and supramolecular assemblies.
This review summarizes developments and applications of flow and thermal field-flow fractionation (FFF) in the areas of macromolecules and supramolecular assemblies. In the past 10 years, the use of these FFF techniques has extended beyond determining diffusion coefficients, hydrodynamic diameters, and molecular weights of standards. Complex samples as diverse as polysaccharides, prion particle...
متن کاملCoupling thermal field-flow fractionation with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the analysis of synthetic polymers.
Thermal field-flow fractionation (ThFFF) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) have been coupled to yield a powerful combination of techniques for polymer analysis. Thermal FFF's high molecular weight (MW) selectivity and sensitivity to chemical composition are used to separate polydisperse polymers and polymer mixtures into the narrow po...
متن کاملHyphenation of Field-Flow Fractionation and Magnetic Particle Spectroscopy
Magnetic nanoparticles (MNPs) exhibit unique magnetic properties making them ideally suited for a variety of biomedical applications. Depending on the desired magnetic effect, MNPs must meet special magnetic requirements which are mainly determined by their structural properties (e.g., size distribution). The hyphenation of chromatographic separation techniques with complementary detectors is c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical and bioanalytical chemistry
دوره 406 6 شماره
صفحات -
تاریخ انتشار 2014