An Information Geometric Approach to Polynomial-time Interior-point Algorithms — Complexity Bound via Curvature Integral —
نویسندگان
چکیده
In this paper, we study polynomial-time interior-point algorithms in view of information geometry. Information geometry is a differential geometric framework which has been successfully applied to statistics, learning theory, signal processing etc. We consider information geometric structure for conic linear programs introduced by self-concordant barrier functions, and develop a precise iteration-complexity estimate of the polynomial-time interior-point algorithm based on an integral of (embedding) curvature of the central trajectory in a rigorous differential geometrical sense. We further study implication of the theory applied to classical linear programming, and establish a surprising link to the strong “primal-dual curvature” integral bound established by Monteiro and Tsuchiya, which is based on the work of Vavasis and Ye of the layered-step interiorpoint algorithm. By using these results, we can show that the total embedding curvature of the central trajectory, i.e., the aforementioned integral over the whole central trajectory, is bounded by O(n log(χ̄A + n)) where χ̄ ∗ A is a condition number of the coefficient matrix A and n is the number of nonnegative variables. In particular, the integral is bounded by O(nm) for combinatorial linear programs including network flow problems where m is the number of constraints. We also provide a complete differential-geometric characterization of the primal-dual curvature in the primal-dual algorithm. Finally, in view of this integral bound, we observe that the primal (or dual) interior-point algorithm requires fewer number of iterations than the primal-dual interior-point algorithm at least in the case of linear programming.
منابع مشابه
Information Geometry and Primal-Dual Interior-point Algorithms
In this paper, we study polynomial-time interior-point algorithms in view of information geometry. We introduce an information geometric structure for a conic linear program based on a self-concordant barrier function. Riemannian metric is defined with the Hessian of the barrier function. We introduce two connections ∇ and ∇∗ which roughly corresponds to the primal and the dual problem. The dua...
متن کاملA Full-NT Step Infeasible Interior-Point Algorithm for Mixed Symmetric Cone LCPs
An infeasible interior-point algorithm for mixed symmetric cone linear complementarity problems is proposed. Using the machinery of Euclidean Jordan algebras and Nesterov-Todd search direction, the convergence analysis of the algorithm is shown and proved. Moreover, we obtain a polynomial time complexity bound which matches the currently best known iteration bound for infeasible interior-point ...
متن کاملAn improved infeasible interior-point method for symmetric cone linear complementarity problem
We present an improved version of a full Nesterov-Todd step infeasible interior-point method for linear complementarityproblem over symmetric cone (Bull. Iranian Math. Soc., 40(3), 541-564, (2014)). In the earlier version, each iteration consisted of one so-called feasibility step and a few -at most three - centering steps. Here, each iteration consists of only a feasibility step. Thus, the new...
متن کاملA full NT-step O(n) infeasible interior-point method for Cartesian P_*(k) –HLCP over symmetric cones using exponential convexity
In this paper, by using the exponential convexity property of a barrier function, we propose an infeasible interior-point method for Cartesian P_*(k) horizontal linear complementarity problem over symmetric cones. The method uses Nesterov and Todd full steps, and we prove that the proposed algorithm is well define. The iteration bound coincides with the currently best iteration bound for the Ca...
متن کاملSmoothed Analysis of Condition Numbers
The running time of many iterative numerical algorithms is dominated by the condition number of the input, a quantity measuring the sensitivity of the solution with regard to small perturbations of the input. Examples are iterative methods of linear algebra, interior-point methods of linear and convex optimization, as well as homotopy methods for solving systems of polynomial equations. Thus a ...
متن کامل