On the complex k-Fibonacci numbers
نویسنده
چکیده
Abstract: We first study the relationship between the k-Fibonacci numbers and the elements of a subset of Q. Later, and since generally studies that are made on the Fibonacci sequences consider that these numbers are integers, in this article, we study the possibility that the index of the k-Fibonacci number is fractional; concretely, 2n+1 2 . In this way, the k-Fibonacci numbers that we obtain are complex. And in our desire to find integer sequences, we consider the sequences obtained from the moduli of these numbers. In this process, we obtain several integer sequences, some of which are indexed in The Online Enciplopedy of Integer Sequences (OEIS).
منابع مشابه
Coefficient Bounds for Analytic bi-Bazileviv{c} Functions Related to Shell-like Curves Connected with Fibonacci Numbers
In this paper, we define and investigate a new class of bi-Bazilevic functions related to shell-like curves connected with Fibonacci numbers. Furthermore, we find estimates of first two coefficients of functions belonging to this class. Also, we give the Fekete-Szegoinequality for this function class.
متن کاملEnergy of Graphs, Matroids and Fibonacci Numbers
The energy E(G) of a graph G is the sum of the absolute values of the eigenvalues of G. In this article we consider the problem whether generalized Fibonacci constants $varphi_n$ $(ngeq 2)$ can be the energy of graphs. We show that $varphi_n$ cannot be the energy of graphs. Also we prove that all natural powers of $varphi_{2n}$ cannot be the energy of a matroid.
متن کاملA Class of Convergent Series with Golden Ratio Based on Fibonacci Sequence
In this article, a class of convergent series based on Fibonacci sequence is introduced for which there is a golden ratio (i.e. $frac{1+sqrt 5}{2}),$ with respect to convergence analysis. A class of sequences are at first built using two consecutive numbers of Fibonacci sequence and, therefore, new sequences have been used in order to introduce a new class of series. All properties of the se...
متن کاملA Combinatoric Proof and Generalization of Ferguson’s Formula for k-generalized Fibonacci Numbers
Various generalizations of the Fibonacci numbers have been proposed, studied and applied over the years (see [5] for a brief list). Probably the best known are the k-generalized Fibonacci numbers F (k) n (also known as the k-fold Fibonacci, k-th order Fibonacci, k-Fibonacci or polynacci numbers), satisfying F (k) n = F (k) n−1 + F (k) n−2 + . . .+ F (k) n−k , n ≥ k , F (k) n = 0 , 0 ≤ n ≤ k − 2...
متن کاملAn application of Fibonacci numbers into infinite Toeplitz matrices
The main purpose of this paper is to define a new regular matrix by using Fibonacci numbers and to investigate its matrix domain in the classical sequence spaces $ell _{p},ell _{infty },c$ and $c_{0}$, where $1leq p
متن کامل