Test-Time Adaptation for 3D Human Pose Estimation

نویسندگان

  • Sikandar Amin
  • Philipp M. Müller
  • Andreas Bulling
  • Mykhaylo Andriluka
چکیده

In this paper we consider the task of articulated 3D human pose estimation in challenging scenes with dynamic background and multiple people. Initial progress on this task has been achieved building on discriminatively trained part-based models that deliver a set of 2D body pose candidates that are then subsequently refined by reasoning in 3D [1, 4, 5]. The performance of such methods is limited by the performance of the underlying 2D pose estimation approaches. In this paper we explore a way to boost the performance of 2D pose estimation based on the output of the 3D pose reconstruction process, thus closing the loop in the pose estimation pipeline. We build our approach around a component that is able to identify true positive pose estimation hypotheses with high confidence. We then either retrain 2D pose estimation models using such highly confident hypotheses as additional training examples, or we use similarity to these hypotheses as a cue for 2D pose estimation. We consider a number of features that can be used for assessing the confidence of the pose estimation results. The strongest feature in our comparison corresponds to the ensemble agreement on the 3D pose output. We evaluate our approach on two publicly available datasets improving over state of the art in each case.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تخمین چنددوربینی حالت سه بعدی انسان با برازش افکنش مدل اسکلت سه بعدی مفصل دار در تصاویر سایه نما

Automatic capture and analysis of human motion, based on images or video is important issue in computer vision due to the vast number of applications in animation, surveillance, biomechanics, Human Computer Interaction, entertainment and game industry. In these applications, it is clear that 3D human pose estimation is an essential part. Therefore, its accuracy has a great effect on the perform...

متن کامل

No Bias Left behind: Covariate Shift Adaptation for Discriminative 3D Pose Estimation

Discriminative, or (structured) prediction, methods have proved effective for variety of problems in computer vision; a notable example is 3D monocular pose estimation. All methods to date, however, relied on an assumption that training (source) and test (target) data come from the same underlying joint distribution. In many real cases, including standard datasets, this assumption is flawed. In...

متن کامل

استفاده از برآورد حالت‌های پویای دست مبتنی بر مدل، برای تقلید عملکرد بازوی انسان توسط ربات با داده‌های کینکت

Pose estimation is a process to identify how a human body and/or individual limbs are configured in a given scene. Hand pose estimation is an important research topic which has a variety of applications in human-computer interaction (HCI) scenarios, such as gesture recognition, animation synthesis and robot control. However, capturing the hand motion is quite a challenging task due to its high ...

متن کامل

Human Pose and Shape Estimation from Multi-View Images for Virtual Dressing Rooms

Estimating the 3D pose and shape of a human body is an essential task for a variety of computer vision applications. A 3D model of a person helps to understand what the person is doing and how the person looks like. Previous work in this area already yields high quality models from a variety of image sources but requires several seconds of processing time. However, fast processing times are ess...

متن کامل

A Dual-Source Approach for 3D Human Pose Estimation from a Single Image

In this work we address the challenging problem of 3D human pose estimation from single images. Recent approaches learn deep neural networks to regress 3D pose directly from images. One major challenge for such methods, however, is the collection of training data. Specifically, collecting large amounts of training data containing unconstrained images annotated with accurate 3D poses is infeasib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014