Sparsity in a Sum of Squares of Polynomials
نویسندگان
چکیده
Representation of a given nonnegative multivariate polynomial in terms of a sum of squares of polynomials has become an essential subject in recent developments of a sum of squares optimization and SDP (semidefinite programming) relaxation of polynomial optimization problems. We disscuss effective methods to get a simpler representation of a “sparse” polynomial as a sum of squares of sparse polynomials by eliminating redundancy.
منابع مشابه
Numerical solution of the spread of infectious diseases mathematical model based on shifted Bernstein polynomials
The Volterra delay integral equations have numerous applications in various branches of science, including biology, ecology, physics and modeling of engineering and natural sciences. In many cases, it is difficult to obtain analytical solutions of these equations. So, numerical methods as an efficient approximation method for solving Volterra delay integral equations are of interest to many res...
متن کاملSparsity in sums of squares of polynomials
Representation of a given nonnegative multivariate polynomial in terms of a sum of squares of polynomials has become an essential subject in recent developments of sums of squares optimization and SDP (semidefinite programming) relaxation of polynomial optimization problems. We disscuss effective methods to obtain a simpler representation of a “sparse” polynomial as a sum of squares of sparse p...
متن کاملSparse SOS Relaxations for Minimizing Functions that are Summation of Small Polynomials
This paper discusses how to find the global minimum and minimizers of functions that are given as the summation of small polynomials (“small” means involving a small number of variables). Some sparse sum of squares (SOS) relaxations are proposed. We compare the computational complexity and lower bound with prior SOS relaxations. The proposed methods are specially useful in solving nonlinear lea...
متن کاملNonnegative Polynomials and Sums of Squares
A real polynomial in n variables is called nonnegative if it is greater than or equal to 0 at all points in R. It is a central question in real algebraic geometry whether a nonnegative polynomial can be written in a way that makes its nonnegativity apparent, i.e. as a sum of squares of polynomials (or more general objects). Algorithms to obtain such representations, when they are known, have ma...
متن کاملThe Polynomials of a Graph
In this paper, we are presented a formula for the polynomial of a graph. Our main result is the following formula: [Sum (d{_u}(k))]=[Sum (a{_kj}{S{_G}^j}(1))], where, u is an element of V(G) and 1<=j<=k.
متن کامل