The Effect of Corpus Size in Combining Supervised and Unsupervised Training for Disambiguation

نویسندگان

  • Michaela Atterer
  • Hinrich Schütze
چکیده

We investigate the effect of corpus size in combining supervised and unsupervised learning for two types of attachment decisions: relative clause attachment and prepositional phrase attachment. The supervised component is Collins’ parser, trained on the Wall Street Journal. The unsupervised component gathers lexical statistics from an unannotated corpus of newswire text. We find that the combined system only improves the performance of the parser for small training sets. Surprisingly, the size of the unannotated corpus has little effect due to the noisiness of the lexical statistics acquired by unsupervised learning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combining Unsupervised and Supervised Methods for PP Attachment Disambiguation

Statistical methods for PP attachment fall into two classes according to the training material used: first, unsupervised methods trained on raw text corpora and second, supervised methods trained on manually disambiguated examples. Usually supervised methods win over unsupervised methods with regard to attachment accuracy. But what if only small sets of manually disambiguated material are avail...

متن کامل

Unsupervised Learning of Disambiguation Rules for Part of Speech Tagging

In this paper we describe an unsupervised learning algorithm for automatically training a rule-based part of speech tagger without using a manually tagged corpus. We compare this algorithm to the Baum-Welch algorithm, used for unsupervised training of stochastic taggers. Next, we show a method for combining unsupervised and supervised rule-based training algorithms to create a highly accurate t...

متن کامل

Supervised PP - Attachment Disambiguation for Swedish ; ( Combining Unsupervised & Supervised Training Data )

This paper is about the application of Machine Learning techniques to the prepositional-phrase attachment ambiguity problem. Since Machine Learning requires large amounts of training instances, the mixture of unsupervised and restricted supervised acquisition of such data will be also reported. Training was performed both on a subset of the content of the Gothenburg Lexical Database (GLDB), and...

متن کامل

Unsupervised WSD based on Automatically Retrieved Examples: The Importance of Bias

This paper explores the large-scale acquisition of sense-tagged examples for Word Sense Disambiguation (WSD). We have applied the “WordNet monosemous relatives” method to construct automatically a web corpus that we have used to train disambiguation systems. The corpus-building process has highlighted important factors, such as the distribution of senses (bias). The corpus has been used to trai...

متن کامل

Domain Specific Sense Disambiguation with Unsupervised Methods

Most approaches in sense disambiguation have been restricted to supervised training over manually annotated, non-technical, English corpora. Application to a new language or technical domain requires extensive manual annotation of appropriate training corpora. As this is both expensive and inefficient, unsupervised methods are to be preferred, specifically in technical domains such as medicine....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006