Linear and Quadratic Discriminant Analysis and Friends
نویسنده
چکیده
منابع مشابه
A prediction distribution of atmospheric pollutants using support vector machines, discriminant analysis and mapping tools (Case study: Tunisia)
Monitoring and controlling air quality parameters form an important subject of atmospheric and environmental research today due to the health impacts caused by the different pollutants present in the urban areas. The support vector machine (SVM), as a supervised learning analysis method, is considered an effective statistical tool for the prediction and analysis of air quality. The work present...
متن کاملA prediction distribution of atmospheric pollutants using support vector machines, discriminant analysis and mapping tools (Case study: Tunisia)
Monitoring and controlling air quality parameters form an important subject of atmospheric and environmental research today due to the health impacts caused by the different pollutants present in the urban areas. The support vector machine (SVM), as a supervised learning analysis method, is considered an effective statistical tool for the prediction and analysis of air quality. The work present...
متن کاملDiscrimination of Golab apple storage time using acoustic impulse response and LDA and QDA discriminant analysis techniques
ABSTRACT- Firmness is one of the most important quality indicators for apple fruits, which is highly correlated with the storage time. The acoustic impulse response technique is one of the most commonly used nondestructive detection methods for evaluating apple firmness. This paper presents a non-destructive method for classification of Iranian apple (Malus domestica Borkh. cv. Golab) according...
متن کاملClassification Using Linear Discriminant Analysis and Quadratic Discriminant Analysis
2 Classification of One-Dimensional Data 2 2.1 Linear Discriminant Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1.1 Building the LDA Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1.2 Results of One-Dimensional LDA Classification . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Quadratic Discriminant Analysis . . . . . ....
متن کاملDiscriminant Analysis and Its Application in DNA Sequence Motif Recognition
Identification of functional motifs in a DNA sequence is fundamentally a statistical pattern recognition problem. Discriminant analysis is widely used for solving such problems. This paper will review two basic parametric methods: LDA (linear discriminant analysis) and QDA (quadratic discriminant analysis). Their usage in recognition of splice sites and exons in the human genome will be demonst...
متن کامل