Linear reactive control for efficient 2D and 3D bipedal walking over rough terrain
نویسندگان
چکیده
The kinematics of human walking are largely driven by passive dynamics, but adaptation to varying terrain conditions and responses to perturbations require some form of active control. The basis for this control is often thought to take the form of entrainment between a neural oscillator (i.e., a central pattern generator and/or distributed counterparts) and the mechanical system. Here we use techniques in evolutionary robotics to explore the potential of a purely reactive, linear controller to control bipedal locomotion over rough terrain. In these simulation studies, joint torques are computed as weighted linear sums of sensor states, and the weights are optimized using an evolutionary algorithm. We show that linear reactive control can enable a seven-link 2D biped and a nine-link 3D biped to walk over rough terrain (steps of ;5% leg length or more in the 2D case). In other words, the simulated walker gradually learns the appropriate weights to achieve stable locomotion. The results indicate that oscillatory neural structures are not necessarily a requirement for robust bipedal walking. The study of purely reactive control through linear feedback may help to reveal some basic control principles of stable walking.
منابع مشابه
Virtual Model Control: An Intuitive Approach for Bipedal Locomotion
Virtual model control is a motion control framework that uses virtual components to create virtual forces generated when the virtual components interact with a robot system. An algorithm derived based on the virtual model control framework is applied to a physical planar bipedal robot. It uses a simple set of virtual components that allows the robot to walk successfully over level terrain. This...
متن کاملReconstructing human push recovery reactions using a three dimensional under-actuated bipedal robot
This paper presents the ability of hybrid zero dynamics (HZD) feedback control method to reproduce human like movements for walking push recovery of an under-actuated 3D biped model. The balance recovery controller is implemented on a three-dimensional under-actuated bipedal model subjected to a push disturbance. The biped robot model is considered as a hybrid system with eight degrees of freed...
متن کاملRobust Bipedal Locomotion on Unknown Terrain
A wide variety of bipedal robots have been constructed with the goal of achieving natural and efficient walking in outdoor environments. Unfortunately, there is still a lack of general schemes enabling the robots to reject terrain disturbances. In this thesis, two approaches are presented to enhance the performance of bipedal robots walking on modest terrain. The first approach searches for a w...
متن کاملPerformance Analysis and Feedback Control of ATRIAS, A 3D Bipedal Robot
This paper develops feedback controllers for walking in 3D, on level ground, with energy efficiency as the performance objective. ATRIAS 2.1 is a new robot that has been designed for the study of 3D bipedal locomotion, with the aim of combining energy efficiency, speed, and robustness with respect to natural terrain variations in a single platform. The robot is highly underactuated, having 6 ac...
متن کاملBipedal locomotion using variable stiffness actuation
Robust and energy-efficient bipedal locomotion in robotics is still a challenging topic. In order to address issues in this field, we can take inspiration from nature, by studying human locomotion. The Spring-Loaded Inverted Pendulum (SLIP) model has shown to be a good model for this purpose. However, the human musculoskeletal system enables us to actively modulate leg stiffness, for example wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Adaptive Behaviour
دوره 21 شماره
صفحات -
تاریخ انتشار 2013