WaaS: Workflow-as-a-Service for the Cloud with Scheduling of Continuous and Data-Intensive Workflows

نویسندگان

  • Sérgio Esteves
  • Luís Veiga
چکیده

Data-intensive and long-lasting applications running in the form of workflows are being increasingly dispatched to cloud computing systems. Current scheduling approaches for graphs of dependencies fail to deliver high resource efficiency while keeping computation costs low, especially for continuous data processing workflows, where the scheduler does not perform any reasoning about the impact new input data may have in the workflow final output. To face such a challenge, we introduce a new scheduling criterion, Quality-of-Data (QoD), which describes the requirements about the data that are worthy of the triggering of tasks in workflows. Based on the QoD notion, we propose a novel service-oriented scheduler planner, for continuous data processing workflows, that is capable of enforcing QoD constraints and guide the scheduling to attain resource efficiency, overall controlled performance, and task prioritization. To contrast the advantages of our scheduling model against others, we developed WaaS (Workflow-as-aService), a workflow coordinator system for the Cloud where data is shared among tasks via cloud columnar database.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Clustering Approach to Scientific Workflow Scheduling on the Cloud with Deadline and Cost Constraints

One of the main features of High Throughput Computing systems is the availability of high power processing resources. Cloud Computing systems can offer these features through concepts like Pay-Per-Use and Quality of Service (QoS) over the Internet. Many applications in Cloud computing are represented by workflows. Quality of Service is one of the most important challenges in the context of sche...

متن کامل

Planning and Scheduling Data Processing Workflows in the Cloud with Quality-of-Data Constraints

Data-intensive and long-lasting applications running in the form of workflows are being increasingly more dispatched to cloud computing systems. Current scheduling approaches for graphs of dependencies fail to deliver high resource efficiency while keeping computation costs low, especially for continuous data processing workflows, where the scheduler does not perform any reasoning about the imp...

متن کامل

Scheduling dynamic workloads in multi-tenant scientific workflow as a service platforms

With the advent of cloud computing and the availability of data collected from increasingly powerful scientific instruments, workflows have become a prevailing mean to achieve significant scientific advances at an increased pace. Emerging Workflow as a Service (WaaS) platforms offer scientists a simple, easily accessible, and cost-effective way of deploying their applications in the cloud at an...

متن کامل

Data Replication-Based Scheduling in Cloud Computing Environment

Abstract— High-performance computing and vast storage are two key factors required for executing data-intensive applications. In comparison with traditional distributed systems like data grid, cloud computing provides these factors in a more affordable, scalable and elastic platform. Furthermore, accessing data files is critical for performing such applications. Sometimes accessing data becomes...

متن کامل

Improving the palbimm scheduling algorithm for fault tolerance in cloud computing

Cloud computing is the latest technology that involves distributed computation over the Internet. It meets the needs of users through sharing resources and using virtual technology. The workflow user applications refer to a set of tasks to be processed within the cloud environment. Scheduling algorithms have a lot to do with the efficiency of cloud computing environments through selection of su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comput. J.

دوره 59  شماره 

صفحات  -

تاریخ انتشار 2016