Mean Actor Critic

نویسندگان

  • Kavosh Asadi
  • Cameron Allen
  • Melrose Roderick
  • Abdel-rahman Mohamed
  • George Konidaris
  • Michael L. Littman
چکیده

We propose a new algorithm, Mean Actor-Critic (MAC), for discrete-action continuous-state reinforcement learning. MAC is a policy gradient algorithm that uses the agent’s explicit representation of all action values to estimate the gradient of the policy, rather than using only the actions that were actually executed. This significantly reduces variance in the gradient updates and removes the need for a variance reduction baseline. We show empirical results on two control domains where MAC performs as well as or better than other policy gradient approaches, and on five Atari games, where MAC is competitive with state-of-the-art policy search algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Function Approximation Approach to Estimation of Policy Gradient for POMDP with Structured Policies

We consider the estimation of the policy gradient in partially observable Markov decision processes (POMDP) with a special class of structured policies that are finite-state controllers. We show that the gradient estimation can be done in the Actor-Critic framework, by making the critic compute a “value” function that does not depend on the states of POMDP. This function is the conditional mean...

متن کامل

An Actor/Critic Algorithm that is Equivalent to Q-Learning

We prove the convergence of an actor/critic algorithm that is equivalent to Q-learning by construction. Its equivalence is achieved by encoding Q-values within the policy and value function of the actor and critic. The resultant actor/critic algorithm is novel in two ways: it updates the critic only when the most probable action is executed from any given state, and it rewards the actor using c...

متن کامل

G Uide a Ctor - C Ritic for C Ontinuous C Ontrol

Actor-critic methods solve reinforcement learning problems by updating a parameterized policy known as an actor in a direction that increases an estimate of the expected return known as a critic. However, existing actor-critic methods only use values or gradients of the critic to update the policy parameter. In this paper, we propose a novel actor-critic method called the guide actor-critic (GA...

متن کامل

OnActor-Critic Algorithms

In this article, we propose and analyze a class of actor-critic algorithms. These are two-time-scale algorithms in which the critic uses temporal difference learning with a linearly parameterized approximation architecture, and the actor is updated in an approximate gradient direction, based on information provided by the critic. We show that the features for the critic should ideally span a su...

متن کامل

Boosting the Actor with Dual Critic

This paper proposes a new actor-critic-style algorithm called Dual Actor-Critic or Dual-AC. It is derived in a principled way from the Lagrangian dual form of the Bellman optimality equation, which can be viewed as a two-player game between the actor and a critic-like function, which is named as dual critic. Compared to its actor-critic relatives, Dual-AC has the desired property that the actor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1709.00503  شماره 

صفحات  -

تاریخ انتشار 2017