Ion Transporters and Abiotic Stress Tolerance in Plants

نویسندگان

  • Faïçal Brini
  • Khaled Masmoudi
چکیده

Adaptation of plants to salt stress requires cellular ion homeostasis involving net intracellular Na(+) and Cl(-) uptake and subsequent vacuolar compartmentalization without toxic ion accumulation in the cytosol. Sodium ions can enter the cell through several low- and high-affinity K(+) carriers. Some members of the HKT family function as sodium transporter and contribute to Na(+) removal from the ascending xylem sap and recirculation from the leaves to the roots via the phloem vasculature. Na(+) sequestration into the vacuole depends on expression and activity of Na(+)/H(+) antiporter that is driven by electrochemical gradient of protons generated by the vacuolar H(+)-ATPase and the H(+)-pyrophosphatase. Sodium extrusion at the root-soil interface is presumed to be of critical importance for the salt tolerance. Thus, a very rapid efflux of Na(+) from roots must occur to control net rates of influx. The Na(+)/H(+) antiporter SOS1 localized to the plasma membrane is the only Na(+) efflux protein from plants characterized so far. In this paper, we analyze available data related to ion transporters and plant abiotic stress responses in order to enhance our understanding about how salinity and other abiotic stresses affect the most fundamental processes of cellular function which have a substantial impact on plant growth development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The responses of L-gulonolactone oxidase and HKT2;1 genes in Aeluropus littoralis’ shoots under high concentration of sodium chloride

Salinity is one of the most important abiotic stresses that limit crop growth and production. Salt stress influences plants in two ways: by affecting ion toxicity and increasing osmotic stress. Ion homeostasis, the excretion of Na+ and using antioxidant systems are the major strategies of salt tolerance in plants. Na+ and K+ transporters with enzymes that are involved in detoxification of react...

متن کامل

The effect of salinity stress on Na+, K+ concentration, Na+/K+ ratio, electrolyte leakage and HKT expression profile in roots of Aeluropus littoralis

Among abiotic stresses, salinity has been increasing over the time for many reasons like using chemical fertilizers, global warming and rising sea levels. Under salinity stress, the loss of water availability, toxicity of Na+ and ion imbalance directly reduces carbon fixation and biomass production in plants. K+ is a major agent that can counteract Na+ stresses, thus the potential of plants to ...

متن کامل

CAX‐ing a wide net: Cation/H+ transporters in metal remediation and abiotic stress signalling

Cation/proton exchangers (CAXs) are a class of secondary energised ion transporter that are being implicated in an increasing range of cellular and physiological functions. CAXs are primarily Ca(2+) efflux transporters that mediate the sequestration of Ca(2+) from the cytosol, usually into the vacuole. Some CAX isoforms have broad substrate specificity, providing the ability to transport trace ...

متن کامل

Role of Cyclic Nucleotide Gated Channels in Stress Management in Plants

Tolerance of plants to a number of biotic and abiotic stresses such as pathogen and herbivore attack, drought, salinity, cold and nutritional limitations is ensued by complex multimodule signaling pathways. The outcome of this complex signaling pathways results in adaptive responses by restoring the cellular homeostasis and thus promoting survival. Functions of many plant cation transporter and...

متن کامل

A Member of the 14-3-3 Gene Family in Brachypodium distachyon, BdGF14d, Confers Salt Tolerance in Transgenic Tobacco Plants

Plant 14-3-3 proteins are involved in diverse biological processes, but for the model monocotyledonous species, Brachypodium distachyon, their roles in abiotic stress tolerance are not well understood. In this study, a total of eight Bd14-3-3 genes were identified from B. distachyon and these were designated respectively as BdGF14a-BdGF14g. The qRT-PCR analyses of 3-month-old plants of B. dista...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012