A new activator protein that activates tryptophan 5-monooxygenase and tyrosine 3-monooxygenase in the presence of Ca2+-, calmodulin-dependent protein kinase. Purification and characterization.

نویسندگان

  • T Yamauchi
  • H Nakata
  • H Fujisawa
چکیده

Rat brain tryptophan 5-monooxygenase was activated by incubation with ATP, Mg2+, calmodulin, and micromolar concentrations of Ca2+. The activating activity was resolved into two distinct peaks upon gel filtration on Sepharose CL-6B: one, Ca2+-, calmodulin-dependent protein kinase, and the other, a heat-labile activator protein. The activator protein was purified to apparent homogeneity from rat brain by a procedure involving calmodulin-Sepharose 4B, Sephadex G-150, and phenyl-Sepharose CL-4B column chromatography. The molecular weight of the activator protein was determined to be 70,000 by sedimentation equilibrium and by gel filtration on Sephadex G-150. The protein gave a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the molecular weight of which was estimated to be 35,000, indicating that the protein might be composed of two identical subunits. Analysis of cross-linked activator protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis also suggested that the protein might be a dimer of identical subunits. Some other molecular properties of the activator protein were: sedimentation coefficient, 4.3 S; Stokes radius, 3.6 nm; diffusion coefficient, 6.0 x 10(-7) cm2/s; frictional ratio, 1.32; and partial specific volume, 0.73 cm3/g. The activator protein activated tyrosine 5-monooxygenase as well as tryptophan 5-monooxygenase in the presence of ATP, Mg2+, Ca2+, calmodulin, and Ca2+-, calmodulin-dependent protein kinase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular cloning of cDNA coding for brain-specific 14-3-3 protein, a protein kinase-dependent activator of tyrosine and tryptophan hydroxylases.

The 14-3-3 protein is a family of acidic proteins present exclusively in the brain and is believed to have a function in monoamine biosynthesis because of its ability to activate tyrosine hydroxylase and tryptophan hydroxylase in the presence of Ca2+/calmodulin-dependent protein kinase type II. In this study, we resolved bovine brain 14-3-3 protein into seven polypeptide components by means of ...

متن کامل

Purification and characterization of a brain-specific multifunctional calmodulin-dependent protein kinase from rat cerebellum.

A brain-specific multifunctional calmodulin-dependent protein kinase, calmodulin-dependent protein kinase IV, which exhibited characteristic properties quite different from those of calmodulin-dependent protein kinase II, was purified approximately 230-fold from rat cerebellum. The purified preparation gave two protein bands with molecular weights of 63,000 (alpha) and 66,000 (beta) on sodium d...

متن کامل

Regulation of human tyrosine hydroxylase activity. Effects of cyclic AMP-dependent protein kinase, calmodulin-dependent protein kinase II and polyanion.

To determine the regulatory mechanism for human tyrosine hydroxylase, we examined modulations of the activity of the enzyme from human pheochromocytoma by cyclic AMP-dependent protein kinase, calmodulin-dependent protein kinase II and polyanion. The most remarkable activation was observed when the enzyme was assayed at physiological pH (pH 7) after being subjected to phosphorylation by cyclic A...

متن کامل

Activation of brain tryptophan hydroxylase by ATP-MG2+: dependence on calmodulin.

Tryptophan hydroxylase [tryptophan 5-monooxygenase, L-tryptophan,tetrahydropterin:oxygen oxidoreductase (5-hydroxylating), EC 1.14.16.4] is activated by phosphorylating conditions (ATP-Mg2+) in a calcium-dependent, cyclic AMP-independent manner. Addition to the phosphorylation reaction of certain antipsychotic drugs that bind to calmodulin, the heat-stable calcium-binding protein, prevents the ...

متن کامل

Activation of calcium/calmodulin-dependent kinase II following bovine rotavirus enterotoxin NSP4 expression

Objective(s): The rotavirus nonstructural protein 4 (NSP4) is responsible for the increase in cytoplasmic calcium concentration through a phospholipase C-dependent and phospholipase C-independent pathways in infected cells. It is shown that increasing of intracellular calcium concentration in rotavirus infected cells is associated with the activation of some members of protein kinases family su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 256 11  شماره 

صفحات  -

تاریخ انتشار 1981