Douady-Earle section, holomorphic motions, and some applications
نویسندگان
چکیده
We review several applications of Douady-Earle section to holomorphic motions over infinite dimensional parameter spaces. Using DouadyEarle section we study group-equivariant extensions of holomorphic motions. We also discuss the relationship between extending holomorphic motions and lifting holomorphic maps. Finally, we discuss several applications of holomorphic motions in complex analysis.
منابع مشابه
A Remark on the Douady Sequence for Non-primary Hopf Manifolds
1. Introduction. To determine cohomology groups of holomorphic vector bundles or more general coherent analytic sheaves on complex manifolds is very important in several complex variables and complex geometry. For example, Cartan-Serre's theorem B and Kodaira's vanishing theorem are fundamental respectively in the studies of two classes of complex manifolds: Stein manifolds and projective algeb...
متن کاملSome Applications of Universal Holomorphic Motions
For a closed subset E of the Riemann sphere, its Teichmüller space TðEÞ is a universal parameter space for holomorphic motions of E over a simply connected complex Banach manifold. In this paper, we study some new applications of this
متن کاملHyperbolic Automorphisms and Holomorphic Motions in C 2
Holomorphic motions have been an important tool in the study of complex dynamics in one variable. In this paper we provide one approach to using holomorphic motions in the study of complex dynamics in two variables. To introduce these ideas more fully, let 1r be the disk of radius r and center 0 in the plane, let P1 be the Riemann sphere, and recall that a holomorphic motion of a set E ⊂ P1 is ...
متن کاملFixed Points of Holomorphic Mappings for Domains in Banach Spaces
We discuss the Earle-Hamilton fixed-point theorem and show how it can be applied when restrictions are known on the numerical range of a holomorphic function. In particular, we extend the Earle-Hamilton theorem to holomorphic functions with numerical range having real part strictly less than 1. We also extend the Lumer-Phillips theorem estimating resolvents to dissipative holomorphic functions.
متن کاملNormal families and holomorphic motions over infinite dimensional parameter spaces
We use Earle’s generalization of Montel’s theorem to obtain some results on holomorphic motions over infinite dimensional parameter spaces. We also study some properties of group-equivariant extensions of holomorphic motions.
متن کامل