Minimum free-energy path of homogenous nucleation from the phase-field equation.
نویسنده
چکیده
The minimum free-energy path (MFEP) is the most probable route of the nucleation process on the multidimensional free-energy surface. In this study, the phase-field equation is used as a mathematical tool to deduce the MFEP of homogeneous nucleation. We use a simple square-gradient free-energy functional with a quartic local free-energy function as an example and study the time evolution of a single nucleus placed within a metastable environment. The time integration of the phase-field equation is performed using the numerically efficient cell-dynamics method. By monitoring the evolution of the size of the nucleus and the free energy of the system simultaneously, we can easily deduce the free-energy barrier as a function of the size of the sub- and the supercritical nucleus along the MFEP.
منابع مشابه
Nucleation of ordered phases in block copolymers.
Nucleation of various ordered phases in block copolymers is studied by examining the free-energy landscape within the self-consistent field theory. The minimum energy path (MEP) connecting two ordered phases is computed using a recently developed string method. The shape, size, and free-energy barrier of critical nuclei are obtained from the MEP, providing information about the emergence of a s...
متن کاملThe Minimum Energy Path to Membrane Pore Formation and Rupture
We combine dynamic self-consistent field theory with the string method to calculate the minimum energy path to membrane pore formation and rupture. In the regime where nucleation can occur on experimentally relevant time scales, the structure of the critical nucleus is between a solvophilic stalk and a locally thinned membrane. Classical nucleation theory fails to capture these molecular detail...
متن کاملFree-energy landscape of nucleation with an intermediate metastable phase studied using capillarity approximation.
Capillarity approximation is used to study the free-energy landscape of nucleation when an intermediate metastable phase exists. The critical nucleus that corresponds to the saddle point of the free-energy landscape as well as the whole free-energy landscape can be studied using this capillarity approximation, and various scenarios of nucleation and growth can be elucidated. In this study, we c...
متن کاملPhase Field Model for the Nucleation in Solid State Phase Transformations : Theories , Algorithms and Applications
Nucleation takes place when a material becomes thermodynamically meta-stable with respect to its transformation to a new state or new crystal structure. Very often, the nucleation process dictates the microstructure of a material. Predicting the shape of a critical nucleus in solids has been a long-standing problem in solid state phase transformations. It is generally believed that nucleation i...
متن کاملFinding Critical Nucleus in Solid-State Transformations
Based on the phase-field total free energy functional and free-end nudged elastic band (NEB) algorithm, a new methodology is developed for finding the saddle-point nucleus in solid-state transformations. Using cubic fi tetragonal transformations in both two and three dimensions as examples, we show that the activation energy and critical nucleus configuration along the minimum energy path (MEP)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 130 24 شماره
صفحات -
تاریخ انتشار 2009