On the Cyclic Homology of Exact Categories
نویسنده
چکیده
The cyclic homology of an exact category was defined by R. McCarthy [17] using the methods of F. Waldhausen [26]. McCarthy’s theory enjoys a number of desirable properties, the most basic being the extension property, i.e. the fact that when applied to the category of finitely generated projective modules over an algebra it specializes to the cyclic homology of the algebra. However, we show that McCarthy’s theory cannot be both, compatible with localizations and invariant under functors inducing equivalences in the derived category. This is our motivation for introducing a new theory for which all three properties hold: extension, invariance and localization. Thanks to these properties, the new theory can be computed explicitly for a number of categories of modules and sheaves.
منابع مشابه
On the cyclic Homology of multiplier Hopf algebras
In this paper, we will study the theory of cyclic homology for regular multiplier Hopf algebras. We associate a cyclic module to a triple $(mathcal{R},mathcal{H},mathcal{X})$ consisting of a regular multiplier Hopf algebra $mathcal{H}$, a left $mathcal{H}$-comodule algebra $mathcal{R}$, and a unital left $mathcal{H}$-module $mathcal{X}$ which is also a unital algebra. First, we construct a para...
متن کاملInvariance and Localization for Cyclic Homology of Dg Algebras
We show that two flat differential graded algebras whose derived categories are equivalent by a derived functor have isomorphic cyclic homology. In particular, ‘ordinary’ algebras over a field which are derived equivalent [48] share their cyclic homology, and iterated tilting [19] [3] preserves cyclic homology. This completes results of Rickard’s [48] and Happel’s [18]. It also extends well kno...
متن کاملExact sequences of extended $d$-homology
In this article, we show the existence of certain exact sequences with respect to two homology theories, called d-homology and extended d-homology. We present sufficient conditions for the existence of long exact extended d- homology sequence. Also we give some illustrative examples.
متن کاملOn the Cylic Homology of Ringed Spaces and Schemes
In their recent proof [2] of Schapira-Schneider’s conjecture [19], Bressler-Nest-Tsygan construct a (generalized) Chern character from the Ktheory of perfect complexes to the negative cyclic homology HC− ∗ (A) of a sheaf of algebras A on a topological space. The first aim of this paper is to show how to construct a (classical) Chern character defined on the Grothendieck group of perfect complex...
متن کاملExcision in Hochschild and Cyclic Homology without Continuous Linear Sections
We generalise the known excision results for Hochschild, cyclic and periodic cyclic homology to algebras in symmetric monoidal categories. Our abstract result also contains excision for extensions of nuclear H-unital Fréchet algebras. As an application, we compute the Hochschild and cyclic homology of the algebra of Whitney functions on an arbitrary closed subset of a smooth manifold, and the p...
متن کامل