Molecular Insights Reveal Psy1, SGR, and SlMYB12 Genes are Associated with Diverse Fruit Color Pigments in Tomato (Solanum lycopersicum L.).

نویسندگان

  • Song-I Kang
  • Indeok Hwang
  • Gayatri Goswami
  • Hee-Jeong Jung
  • Ujjal Kumar Nath
  • Hee-Ju Yoo
  • Je Min Lee
  • Ill Sup Nou
چکیده

The color of tomato (Solanum lycopersicum) fruit flesh is often used as an indicator of quality. Generally, fruit color is determined by the accumulation of carotenoids and flavonoids, along with concomitant degradation of chlorophylls during ripening. Several genes, such as phytoenesynthetase1 (Psy1), STAY-GREEN (SGR), and SlMYB12, have been extensively studied to elucidate the genes controlling fruit coloration. In this study, we observed low carotenoid levels without degradation of chlorophylls in green-fruited tomato caused by mutations in three genes, Psy1, SGR, and SlMYB12. We crossed two inbred lines, BUC30 (green-fruited) and KNR3 (red-fruited), to confirm the causal effects of these mutations on fruit coloration. The F₂ population segregated for eight different fruit colors in the proportions expected for three pairs of gene, as confirmed by a chi-square test. Therefore, we developed a population of tomato with diverse fruit colors and used molecular markers to detect the genes responsible for the individual fruit colors. These newly-designed DNA-based markers can be used for selecting desired fruit color genotypes within adapted breeding materials and cultivars for breeding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit color.

The color of tomato fruit is mainly determined by carotenoids and flavonoids. Phenotypic analysis of an introgression line (IL) population derived from a cross between Solanum lycopersicum 'Moneyberg' and the wild species Solanum chmielewskii revealed three ILs with a pink fruit color. These lines had a homozygous S. chmielewskii introgression on the short arm of chromosome 1, consistent with t...

متن کامل

Epistasis in tomato color mutations involves regulation of phytoene synthase 1 expression by cis-carotenoids.

Tomato (Solanum lycopersicum) fruit accumulate the red carotenoid pigment lycopene. The recessive mutation yellow-flesh (locus r) in tomato eliminates fruit carotenoids by disrupting the activity of the fruit-specific phytoene synthase (PSY1), the first committed step in the carotenoid biosynthesis pathway. Fruits of the recessive mutation tangerine (t) appear orange due to accumulation of 7,9,...

متن کامل

Transformation of Cry1a105 gene to tomato in order to increase resistance to Heliothis

Tomato (Solanum lycopersicum L.) is an important vegetable in the world, it exposes to a wide range of pathogens and plant pests attack. Fruit worm is one of the most important the plant pest which mainly damage the fruit and causes the yield reduction. In this study, cry1a105 gene was cloned to pBI121 plasmid (with 35S promoter and Nos terminator), and was transferred to tomato by Agrobacteriu...

متن کامل

Worm castings-based growing media with biochar and arbuscular mycorrhizal fungi for producing organic tomato (Solanum lycopersicum L.) in greenhouse.

Organic vegetable production has specific research and innovation requirements which are not shared by other parts of the food and farming sector. A pot experiment was conducted to investigate the interactive effects of few permitted organic inputs such as arbuscular mycorrhizal fungi, biochar, and different ratios of peat:worm casting on tomato (Solanum lycopersicum L.) growth, mycorrhizal dep...

متن کامل

Computational deciphering of biotic stress associated genes in tomato (Solanum lycopersicum)

Tomato (Solanum lycopersicum) is one of the major vegetable plant and a model system for fruit development. Its global importance is due to its lycopene pigment which has anti-oxidative and anti-cancerous properties. Though > 1.5 M biotic stress associated ESTs of tomato are available but cumulative analysis to predict genes is warranted. Availability of whole genome de novo assembly can advant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 22 12  شماره 

صفحات  -

تاریخ انتشار 2017