Spectral Methods for Regularization in Learning Theory
نویسندگان
چکیده
In this paper we show that a large class of regularization methods designed for solving ill-posed inverse problems gives rise to novel learning algorithms. All these algorithms are consistent kernel methods which can be easily implemented. The intuition behind our approach is that, by looking at regularization from a filter function perspective, filtering out undesired components of the target function ensures stability with respect to the random sampling thereby inducing good generalization properties. We present a formal derivation of the methods under study by recalling that learning can be written as the inversion of a linear embedding equation given a stochastic discretization. Consistency as well as finite sample bounds are derived for both regression and classification.
منابع مشابه
Vector Field Learning via Spectral Filtering
In this paper we present and study a new class of regularized kernel methods for learning vector fields, which are based on filtering the spectrum of the kernel matrix. These methods include Tikhonov regularization as a special case, as well as interesting alternatives such as vector valued extensions of L2-Boosting. Our theoretical and experimental analysis shows that spectral filters that yie...
متن کاملSpectral Norm Regularization for Improving the Generalizability of Deep Learning
We investigate the generalizability of deep learning based on the sensitivity to input perturbation. We hypothesize that the high sensitivity to the perturbation of data degrades the performance on it. To reduce the sensitivity to perturbation, we propose a simple and effective regularization method, referred to as spectral norm regularization, which penalizes the high spectral norm of weight m...
متن کاملON SPECTRAL LEARNING On Spectral Learning
In this paper, we study the problem of learning a matrix W from a set of linear measurements. Our formulation consists in solving an optimization problem which involves regularization with a spectral penalty term. That is, the penalty term is a function of the spectrum of the covariance of W . Instances of this problem in machine learning include multi-task learning, collaborative filtering and...
متن کاملSpectral Algorithms for Supervised Learning
We discuss how a large class of regularization methods, collectively known as spectral regularization and originally designed for solving ill-posed inverse problems, gives rise to regularized learning algorithms. All of these algorithms are consistent kernel methods that can be easily implemented. The intuition behind their derivation is that the same principle allowing for the numerical stabil...
متن کاملOn Spectral Learning
In this paper, we study the problem of learning a matrix W from a set of linear measurements. Our formulation consists in solving an optimization problem which involves regularization with a spectral penalty term. That is, the penalty term is a function of the spectrum of the covariance of W . Instances of this problem in machine learning include multi-task learning, collaborative filtering and...
متن کامل