Transfer of the tumor necrosis factor alpha gene into hematopoietic progenitor cells as a model for site-specific cytokine delivery after marrow transplantation.
نویسندگان
چکیده
Relapse of leukemia is the major cause of failure after autologous stem cell transplantation due to reinfusion of residual clonogenic cells and the absence of an immune-mediated graft-versus-leukemia effect. To provide an antileukemia effect, immune-activating cytokines have been given to patients after transplantation. Systemic administration of such cytokines early after transplantation is often accompanied by substantial side effects, and it is unknown whether sufficient concentrations reach the sites of residual disease in the marrow. As a method of site-directed immunotherapy provided early after stem cell transplantation, we have tested in a murine model whether (1) marrow can be retrovirally transduced with the tumor necrosis factor alpha (TNF alpha) gene, (2) local production of TNF alpha by marrow cells after transplantation can be achieved, and (3) adverse effects of TNF alpha occurred. Balb/c mice were treated with 5-fluorouracil and bone marrow (BM) was obtained 4 days later. Whole BM was transduced in the presence of interleukin-3 (IL-3), IL-6, and stem cell factor by coculture with the packaging cell line GP+E-86, producing the cDNA for TNF alpha. Irradiated (1,300 cGy) syngeneic recipient mice were given 10(6) transduced BM cells on day 0. Integration of the TNF alpha gene into the host genome was documented by Southern blotting in spleen and BM cells on days 7 and 12 and in BM on day 40 after marrow infusion, but was no longer found on day 90. Messenger RNA for TNF alpha was present on day 12, but could no longer be shown on day 40 or 90. Although no measurable (L929 bioassay) levels of TNF alpha were found in serum of mice who had received TNF alpha transduced marrow, the supernatant of 10(6) unstimulated BM cells obtained 12 days after marrow infusion was found to have 7 pg of TNF alpha compared with 1.8 pg in nontransduced marrow. Mice that had received TNF alpha transduced marrow showed no side effects suggestive of systemic TNF alpha release, and cellularity of the TNF alpha-transduced marrow was not different from control mice that had received unmanipulated marrow or cells transduced with the neomycin resistance gene only. The studies suggest that gene transfer of immune-activating cytokines into hematopoietic cells could be used as a means to achieve their temporary local production early after transplantation by cells located in the BM.
منابع مشابه
Effects of Inflammatory Cytokine Tumor Necrosis Factor-α on Human Mesenchymal Stem Cell Gene Expression: A Mechanism for Liver Regeneration
Introduction Insulin-like growth factor I (IGF-I) which is produced in abundance in the normal adult liver, is deeply involved in hepatocyte survival, growth, and differentiation during liver development. IGF-I plays the roles via the receptor (IGF-IR) signaling pathway. IGF-IR unlike IGF-I is expressed strongly in the developing liver, but much more weakly in adults. Objective: We hypothesi...
متن کاملAdvances in Hematopoietic Stem Cell Mobilization and Peripheral Blood Stem Cell Transplantation
Hematopoietic stem/progenitor cells (HSPCs) which give rise to different blood cell types are present within the bone marrow microenvironment, especially in flat bones such as skull, vertebrae, pelvis and chest. Interacting factors such as stromal derived factor-1/CXCR4, very late antigen-4/vascular cell adhesion molecule-1, Lymphocyte function-associated antigen-1/ intercellular adhesion molec...
متن کاملBone marrow stromal cells and their application in neural injuries
Background: This article reviews experimental and clinical studies in which neural injuries repaired with bone marrow stromal cells. History: Bone marrow contains two kinds of stem cells: hematopoietic and nonhematopoietic (stromal) stem cell. In vitro studies indicate that bone marrow stromal cells have the capacity of differentiation into other cells (such as neural cell) under treatment wit...
متن کاملEssential Role for the P55 Tumor Necrosis Factor Receptor in Regulating Hematopoiesis at a Stem Cell Level
Hematopoietic stem cell (HSC) self-renewal is a complicated process, and its regulatory mechanisms are poorly understood. Previous studies have identified tumor necrosis factor (TNF)-alpha as a pleiotropic cytokine, which, among other actions, prevents various hematopoietic progenitor cells from proliferating and differentiating in vitro. However, its role in regulating long-term repopulating H...
متن کاملAdipose Stem Cells as a Feeder Layer Reduce Apoptosis and p53 Gene Expression of Human Expanded Hematopoietic Stem Cells Derived from Cord Blood
Introduction: Human hematopoietic stem cells (hHSCs) have been used for transplantation in hematologic failures. Because the number of hHSCs per cord blood unit is limited, the expansion of these cells is important for clinical application. It has been reported that cytokines and feeder layer provide a perspective to in vitro expansion of hHSCs. In this regard, cord blood CD34+ cells ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 84 9 شماره
صفحات -
تاریخ انتشار 1994