Sub-linear Upper Bounds on Fourier dimension of Boolean Functions in terms of Fourier sparsity

نویسنده

  • Swagato Sanyal
چکیده

We prove that the Fourier dimension of any Boolean function with Fourier sparsity s is at most O ( s ) . Our proof method yields an improved bound of Õ( √ s) assuming a conjecture of Tsang et. al. [TWXZ13], that for every Boolean function of sparsity s there is an affine subspace of F2 of co-dimension O(poly log s) restricted to which the function is constant. This conjectured bound is tight upto poly-logarithmic factors as the Fourier dimension and sparsity of the address function are quadratically separated. We obtain these bounds by observing that the Fourier dimension of a Boolean function is equivalent to its non-adaptive parity decision tree complexity, and then bounding the latter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Near-Optimal Upper Bound on Fourier Dimension of Boolean Functions in Terms of Fourier Sparsity

We prove that the Fourier dimension of any Boolean function with Fourier sparsity s is at most O ( √ s log s). This bound is tight upto a factor of log s as the Fourier dimension and sparsity of the address function are quadratically related. We obtain the bound by observing that the Fourier dimension of a Boolean function is equivalent to its non-adaptive parity decision tree complexity, and t...

متن کامل

Testing Fourier Dimensionality and Sparsity

We present a range of new results for testing properties of Boolean functions that are defined in terms of the Fourier spectrum. Broadly speaking, our results show that the property of a Boolean function having a concise Fourier representation is locally testable. We give the first efficient algorithms for testing whether a Boolean function has a sparse Fourier spectrum (small number of nonzero...

متن کامل

Upper Bounds on Fourier Entropy

Given a function f : {0, 1} n → R, its Fourier Entropy is de ned to be −∑S f̂(S) log f̂(S), where f̂ denotes the Fourier transform of f. This quantity arises in a number of applications, especially in the study of Boolean functions. An outstanding open question is a conjecture of Friedgut and Kalai (1996), called Fourier Entropy In uence (FEI) Conjecture, asserting that the Fourier Entropy of any ...

متن کامل

Generalization of Boolean Functions Properties to Functions Defined over GF(p)

Abstract: Problem statement: Traditionally, cryptographic applications designed on hardware have always tried to take advantage of the simplicity of implementation functions over GF(p), p = 2, to reduce costs and improve performance. On the contrast, functions defined over GF(p); p > 2, possess far better cryptographic properties than GF(2) functions. Approach: We generalize some of the previou...

متن کامل

Spectral Properties of Threshold Functions

We examine the spectra of boolean functions obtained as the sign of a real polynomial of degree d. A tight lower bound on various norms of the lower d levels of the function's Fourier transform is established. The result is applied to derive best possible lower bounds on the influences of variables on linear threshold functions. Some conjectures are posed concerning upper and lower bounds on in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Colloquium on Computational Complexity (ECCC)

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2014