A New Schema Theorem for GeneticProgramming with One - point
نویسنده
چکیده
We review the main results obtained in the theory of schemata in Genetic Programming (GP) emphasising their strengths and weaknesses. Then we propose a new, simpler deenition of the concept of schema for GP which is closer to the original concept of schema in genetic algorithms (GAs). Along with a new form of crossover, one-point crossover, and point mutation this concept of schema has been used to derive an improved schema theorem for GP which describes the propagation of schemata from one generation to the next. We discuss this result and show that our schema theorem is the natural counterpart for GP of the schema theorem for GAs, to which it asymptotically converges.
منابع مشابه
Diagonal arguments and fixed points
A universal schema for diagonalization was popularized by N.S. Yanofsky (2003), based on a pioneering work of F.W. Lawvere (1969), in which the existence of a (diagonolized-out and contradictory) object implies the existence of a fixed-point for a certain function. It was shown that many self-referential paradoxes and diagonally proved theorems can fit in that schema. Here, we fi...
متن کاملCommon xed point theorem for w-distance with new integral type contraction
Boujari [5] proved a fixed point theorem with an old version of the integraltype contraction , his proof is incorrect. In this paper, a new generalizationof integral type contraction is introduced. Moreover, a fixed point theorem isobtained.
متن کاملA New Schema Theory for Genetic Programming with One-point Crossover and Point Mutation
In this paper we first review the main results obtained in the theory of schemata in Genetic Programming (GP) emphasising their strengths and weaknesses. Then we propose a new, simpler definition of the concept of schema for GP which is quite close to the original concept of schema in genetic algorithms (GAs). Along with a new form of crossover, one-point crossover, and point mutation this conc...
متن کاملSimultaneous generalizations of known fixed point theorems for a Meir-Keeler type condition with applications
In this paper, we first establish a new fixed point theorem for a Meir-Keeler type condition. As an application, we derive a simultaneous generalization of Banach contraction principle, Kannan's fixed point theorem, Chatterjea's fixed point theorem and other fixed point theorems. Some new fixed point theorems are also obtained.
متن کاملNew results for fractional evolution equations using Banach fixed point theorem
In this paper, we study the existence of solutions for fractional evolution equations with nonlocalconditions. These results are obtained using Banach contraction xed point theorem. Other resultsare also presented using Krasnoselskii theorem.
متن کامل