Passive robotic models of propulsion by the bodies and caudal fins of fish.
نویسندگان
چکیده
Considerable progress in understanding the dynamics of fish locomotion has been made through studies of live fishes and by analyzing locomotor kinematics, muscle activity, and fluid dynamics. Studies of live fishes are limited, however, in their ability to control for parameters such as length, flexural stiffness, and kinematics. Keeping one of these factors constant while altering others in a repeatable manner is typically not possible, and it is difficult to make critical measurements such as locomotor forces and torques on live, freely-swimming fishes. In this article, we discuss the use of simple robotic models of flexing fish bodies during self-propulsion. Flexible plastic foils were actuated at the leading edge in a heave and/or pitch motion using a robotic flapping controller that allowed moving foils to swim at their self-propelled speed. We report unexpected non-linear effects of changing the length and stiffness of the foil, and analyze the effect of changing the shape of the trailing edge on self-propelled swimming speed and kinematics. We also quantify the structure of the wake behind swimming foils with volumetric particle image velocimetry, and describe the effect of flexible heterocercal and homocercal tail shapes on flow patterns in the wake. One key advantage of the considerable degree of control afforded by robotic devices and the use of simplified geometries is the facilitation of mathematical analyses and computational models, as illustrated by the application of an inviscid computational model to propulsion by a flapping foil. This model, coupled with experimental data, demonstrates an interesting resonance phenomenon in which swimming speed varies with foil length in an oscillatory manner. Small changes in length can have dramatic effects on swimming speed, and this relationship changes with flexural stiffness of the swimming foil.
منابع مشابه
Design and Control of an Embedded Vision Guided Robotic Fish with Multiple Control Surfaces
This paper focuses on the development and control issues of a self-propelled robotic fish with multiple artificial control surfaces and an embedded vision system. By virtue of the hybrid propulsion capability in the body plus the caudal fin and the complementary maneuverability in accessory fins, a synthesized propulsion scheme including a caudal fin, a pair of pectoral fins, and a pelvic fin i...
متن کاملThe Structural Design and Control System of a Caudal Fin Robotic Fish
This article took the trevally crescent-shaped caudal fin mode fishes as bionic object, based on the biological observation and bionic research, established the fish swimming model of trevally crescentshaped caudal fin mode, and designed the three degrees of freedom, tailtail fins pectoral fin, robotic fish. It detailed focuses on the fish propulsion theory and robotic fish overall design, incl...
متن کاملBio-inspired Robotic Fish with Multiple Fins
In order to improve the performance of AUVs in terms of efficiency and maneuverability, researchers have proposed biomimetic propulsion systems that swim using flapping fins rather than rotary propellers. This calls for the exploration of unique locomotion characteristics found in a variety of fish for use in underwater robots. (Sfakiotakis et. al., 1999) present a good review of fish swimming ...
متن کاملEffects of Tail Geometries on the Performance and Wake Pattern in Flapping Propulsion
Swimming fishes exhibit remarkable diversities of the caudal fin geometries. In this work, a computational study is conducted to investigate the effects of the caudal fin shape on the hydrodynamic performance and wake patterns in flapping propulsion. We construct the propulsor models in different shapes by digitizing the real caudal fins of fish across a wide range of species spanning homocerca...
متن کاملEvolutionary multiobjective design of a flexible caudal fin for robotic fish.
Robotic fish accomplish swimming by deforming their bodies or other fin-like appendages. As an emerging class of embedded computing system, robotic fish are anticipated to play an important role in environmental monitoring, inspection of underwater structures, tracking of hazardous wastes and oil spills, and the study of live fish behaviors. While integration of flexible materials (into the fin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Integrative and comparative biology
دوره 52 5 شماره
صفحات -
تاریخ انتشار 2012