Recognition of tRNALeu by Aquifex aeolicus leucyl-tRNA synthetase during the aminoacylation and editing steps

نویسندگان

  • Peng Yao
  • Bin Zhu
  • Sophie Jaeger
  • Gilbert Eriani
  • En-Duo Wang
چکیده

Recognition of tRNA by the cognate aminoacyl-tRNA synthetase during translation is crucial to ensure the correct expression of the genetic code. To understand tRNA(Leu) recognition sets and their evolution, the recognition of tRNA(Leu) by the leucyl-tRNA synthetase (LeuRS) from the primitive hyperthermophilic bacterium Aquifex aeolicus was studied by RNA probing and mutagenesis. The results show that the base A73; the core structure of tRNA formed by the tertiary interactions U8-A14, G18-U55 and G19-C56; and the orientation of the variable arm are critical elements for tRNA(Leu) aminoacylation. Although dispensable for aminoacylation, the anticodon arm carries discrete editing determinants that are required for stabilizing the conformation of the post-transfer editing state and for promoting translocation of the tRNA acceptor arm from the synthetic to the editing site.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Leucyl-tRNA synthetase from the hyperthermophilic bacterium Aquifex aeolicus recognizes minihelices.

Aminoacylation of the minihelix mimicking the amino acid acceptor arm of tRNA has been demonstrated in more than 10 aminoacyl-tRNA synthetase systems. Although Escherichia coli or Homo sapiens cytoplasmic leucyl-tRNA synthetase (LeuRS) is unable to charge the cognate minihelix or microhelix, we show here that minihelix(Leu) is efficiently charged by Aquifex aeolicus synthetase, the only known h...

متن کامل

Leucyl-tRNA synthetase from the ancestral bacterium Aquifex aeolicus contains relics of synthetase evolution.

The editing reactions catalyzed by aminoacyl-tRNA synthetases are critical for the faithful protein synthesis by correcting misactivated amino acids and misaminoacylated tRNAs. We report that the isolated editing domain of leucyl-tRNA synthetase from the deep-rooted bacterium Aquifex aeolicus (alphabeta-LeuRS) catalyzes the hydrolytic editing of both mischarged tRNA(Leu) and minihelix(Leu). Wit...

متن کامل

In vivo identification of essential nucleotides in tRNALeu to its functions by using a constructed yeast tRNALeu knockout strain

The fidelity of protein biosynthesis requires the aminoacylation of tRNA with its cognate amino acid catalyzed by aminoacyl-tRNA synthetase with high levels of accuracy and efficiency. Crucial bases in tRNALeu to aminoacylation or editing functions of leucyl-tRNA synthetase have been extensively studied mainly by in vitro methods. In the present study, we constructed two Saccharomyces cerevisia...

متن کامل

Isolated CP1 domain of Escherichia coli leucyl-tRNA synthetase is dependent on flanking hinge motifs for amino acid editing activity.

Protein synthesis and its fidelity rely upon the aminoacyl-tRNA synthetases. Leucyl-tRNA synthetase (LeuRS), isoleucyl-tRNA synthetase (IleRS), and valyl-tRNA synthetase (ValRS) have evolved a discrete editing domain called CP1 that hydrolyzes the respective incorrectly misaminoacylated noncognate amino acids. Although active CP1 domain fragments have been isolated for IleRS and ValRS, previous...

متن کامل

Enzymes assembled from Aquifex aeolicus and Escherichia coli leucyl-tRNA synthetases.

Aquifex aeolicus alphabeta-LeuRS is the only known heterodimeric LeuRS, while Escherichia coli LeuRS is a canonical monomeric enzyme. By using the genes encoding A. aeolicus and E. coli LeuRS as PCR templates, the genes encoding the alpha and beta subunits from A. aeolicus alphabeta-LeuRS and the equivalent amino- and carboxy-terminal parts of E. coli LeuRS (identified as alpha' and beta') were...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2008