Quantitative measurement of phosphoproteome response to osmotic stress in arabidopsis based on Library-Assisted eXtracted Ion Chromatogram (LAXIC).

نویسندگان

  • Liang Xue
  • Pengcheng Wang
  • Lianshui Wang
  • Emily Renzi
  • Predrag Radivojac
  • Haixu Tang
  • Randy Arnold
  • Jian-Kang Zhu
  • W Andy Tao
چکیده

Global phosphorylation changes in plants in response to environmental stress have been relatively poorly characterized to date. Here we introduce a novel mass spectrometry-based label-free quantitation method that facilitates systematic profiling plant phosphoproteome changes with high efficiency and accuracy. This method employs synthetic peptide libraries tailored specifically as internal standards for complex phosphopeptide samples and accordingly, a local normalization algorithm, LAXIC, which calculates phosphopeptide abundance normalized locally with co-eluting library peptides. Normalization was achieved in a small time frame centered to each phosphopeptide to compensate for the diverse ion suppression effect across retention time. The label-free LAXIC method was further treated with a linear regression function to accurately measure phosphoproteome responses to osmotic stress in Arabidopsis. Among 2027 unique phosphopeptides identified and 1850 quantified phosphopeptides in Arabidopsis samples, 468 regulated phosphopeptides representing 497 phosphosites have shown significant changes. Several known and novel components in the abiotic stress pathway were identified, illustrating the capability of this method to identify critical signaling events among dynamic and complex phosphorylation. Further assessment of those regulated proteins may help shed light on phosphorylation response to osmotic stress in plants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isolation of Brassica napus MYC2 gene and analysis of its expression in response to water deficit stress

Manipulation of stress related transcription factors to improve plant stress tolerance is a major goal of current biotechnology researches. MYC2 gene encodes a key stress-related transcription factor involved in Jasmonate (JA) and abscisic acid (ABA) signaling pathways in Arabidopsis. Brassica napus, as a globally important oilseed crop, is a close relative of Arabidopsis.  In the present study...

متن کامل

Comparative Analysis of Phosphoproteome Remodeling After Short Term Water Stress and ABA Treatments versus Longer Term Water Stress Acclimation

Several studies have used short term dehydration, osmotic stress or Abscisic Acid (ABA) treatments to identify the initial protein phosphorylation-dephosphorylation responses to drought and low water potential or ABA treatments. However, longer term drought acclimation leads to altered expression of many kinases and phosphatases suggesting that it may also produce unique changes in phosphoprote...

متن کامل

Modeling and Optimization of Ultrasound-Assisted Osmotic Dehydration with Finished Freeze Drying on Black Cherries – The Effect on Antioxidant Activities

ABSTRACT: In this study, response surface methodology was used to optimize ultrasound osmotic pretreatment with finished freeze drying of black cherries. Freeze drying is a separation process based on the  sublimation phenomenon. This process has the following advantages as compared to the conventional drying process, maintenance of the structure, moisture removal at low temperature (reduced tr...

متن کامل

Omics Approaches Toward Defining the Comprehensive Abscisic Acid Signaling Network in Plants.

ABA is a plant hormone that plays crucial roles in controlling cellular and physiological responses to osmotic stress and in developmental processes. Endogenous ABA levels are increased in response to a decrease in water availability in cells, and ABA sensing and signaling are thought to be mediated according to the current model established in Arabidopsis thaliana, which involves pyrabactin re...

متن کامل

Plastid osmotic stress activates cellular stress responses in Arabidopsis.

Little is known about cytoplasmic osmoregulatory mechanisms in plants, and even less is understood about how the osmotic properties of the cytoplasm and organelles are coordinately regulated. We have previously shown that Arabidopsis (Arabidopsis thaliana) plants lacking functional versions of the plastid-localized mechanosensitive ion channels Mechanosensitive Channel of Small Conductance-Like...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular & cellular proteomics : MCP

دوره 12 8  شماره 

صفحات  -

تاریخ انتشار 2013