Approximating the Largest Eigenvalue via Powering and the Lanczos method
نویسنده
چکیده
Notation: λ1(A) = largest eigenvalue of A. Motivation: The largest eigenvalue tells us the spectrum of a matrix and thus can be somewhat useful. More crucially for the adjacency matrix of a graph, we know exactly that the all one’s vector is the largest eigenvector, and thus by working orthogonal to this vector we can approximate the second largest eigenvalue of the graph, which tells us how well connected the graph is and how nodes are clustered.
منابع مشابه
Convergence of Block Lanczos Method for Eigenvalue Clusters
The Lanczos method is often used to solve a large and sparse symmetric matrix eigenvalue problem. It is well-known that the single-vector Lanczos method can only find one copy of any multiple eigenvalue. To compute all or some of the copies of a multiple eigenvalue, one has to use the block Lanczos method which is also known to compute clustered eigenvalues much faster than the single-vector La...
متن کاملEstimating a Largest Eigenvector by Polynomial Algorithms with a Random Start
In 7] and 8], the power and Lanczos algorithms with random start for estimating the largest eigenvalue of an n n large symmetric positive deenite matrix were analyzed. In this paper we continue this study by estimating an eigenvector corresponding to the largest eigenvalue. We analyze polynomial algorithms using Krylov information for two error criteria: the randomized error and the randomized ...
متن کاملConvergence of the block Lanczos method for eigenvalue clusters
The Lanczos method is often used to solve a large scale symmetric matrix eigen-value problem. It is well-known that the single-vector Lanczos method can only find one copy of any multiple eigenvalue and encounters slow convergence towards clustered eigenvalues. On the other hand, the block Lanczos method can compute all or some of the copies of a multiple eigenvalue and, with a suitable block s...
متن کاملStability of the Lanczos Method for Matrix Function Approximation
Theoretically elegant and ubiquitous in practice, the Lanczos method can approximate f(A)x for any symmetric matrix A ∈ R, vector x ∈ R, and function f . In exact arithmetic, the method’s error after k iterations is bounded by the error of the best degree-k polynomial uniformly approximating the scalar function f(x) on the range [λmin(A), λmax(A)]. However, despite decades of work, it has been ...
متن کاملLocal Lanczos Spectral Approximation for Community Detection
We propose a novel approach called the Local Lanczos Spectral Approximation (LLSA) for identifying all latent members of a local community from very few seed members. To reduce the computation complexity, we first apply a fast heat kernel diffusing to sample a comparatively small subgraph covering almost all possible community members around the seeds. Then starting from a normalized indicator ...
متن کامل