Key Role of End-Capping Groups in Optoelectronic Properties of Poly-p-phenylene Cation Radicals
نویسندگان
چکیده
Poly-p-phenylenes (PPs) are prototype systems for understanding the charge transport in π-conjugated polymers. In a combined computational and experimental study, we demonstrate that the smooth evolution of redox and optoelectronic properties of PP cation radicals toward the polymeric limit can be significantly altered by electron-donating iso-alkyl and iso-alkoxy end-capping groups. A multiparabolic model (MPM) developed and validated here rationalizes this unexpected effect by interplay of the two modes of hole stabilization: due to the framework of equivalent p-phenylene units and due to the electron-donating end-capping groups. A symmetric, bell-shaped hole in unsubstituted PPs becomes either slightly skewed and shifted toward an end of the molecule in iso-alkyl-capped PPs or highly deformed and concentrated on a terminal unit in PPs with strongly electron-donating iso-alkoxy capping groups. The MPM shows that the observed linear 1/n evolution of the PP cation radical properties toward the polymer limit originates from the hole stabilization due to the growing chain of p-phenylene units, while shifting of the hole toward electron-donating end-capping groups leads to early breakdown of these 1/n dependencies. These insights, along with the readily applicable and flexible multistate parabolic model, can guide studies of complex donor-spacer-acceptor systems and doped molecular wires to aid the design of the next generation materials for long-range charge transport and photovoltaic applications.
منابع مشابه
Investigations of New Low Gap Conjugated Compounds Based on Thiophene-Phenylene as Solar Cells Materials
The research in new organic π-conjugated molecules with specific properties has become one of the most interesting topics in fields of materials chemistry. These materials are promising for optoelectronic device technology such as solar cells. On the other hand, the use of low band gap materials is a viable method for better harvesting of the solar spectrum and increasing its efficiency. The co...
متن کاملA Combined Experimental and Theoretical Study of Optoelectronic and Structural Properties of a New Copolymer Based on Polyvinylcarbazole (PVK) and Poly (3-hexylthiophene) (PHT)
In this paper we report on a combination of experimental and theoretical study of a new copolymer based on carbazole and methylthiophene (Cbz-Mth), in their neutral and oxidized states. We discuss the influence of chain length on conformational and optoelectronic properties with the DFT method. Conformational analysis shows that there are no big changes in the structural parameters of neutral o...
متن کاملSynthesis, Characterization and Transport Properties of Novel Ion-exchange Nanocomposite Membrane Containing In-situ Formed ZnO Nanoparticles
A new type of cation-exchange nanocomposite membranes was prepared by in-situ formation of ZnO nanoparticles in a blend containing sulfonated poly (2,6-dimethyl-1,4-phenylene oxide) and sulfonated polyvinylchloride via a simple one-step chemical method. As-synthesized nanocomposite membranes were characterized using Fourier transform infrared spectroscopy, scan...
متن کاملDirect visual evidence for quinoidal charge delocalization in poly-p-phenylene cation radical.
Recently, X-ray crystallographic evidence of quinoidal charge delocalization in poly-p-phenylene cation radicals was reported [Banerjee, M. et al., J. Am. Chem. Soc. 2007, 129, 8070]. In this paper, direct visual evidence for quinoidal charge delocalization in quaterphylene (QP) is shown with three-dimensional (3D) charge difference densities. It was revealed that the extra positive charge main...
متن کاملClick functionalized poly(p-phenylene ethynylene)s as highly selective and sensitive fluorescence turn-on chemosensors for Zn2+ and Cd2+ ions.
Side-chain functionalized poly(p-phenylene ethynylene)s (PPEs) carrying triazole linkers, amino donors/receptors, and solubilizing groups have been found to yield remarkably high efficiency of fluorescence turn-on sensing for Zn(2+) and Cd(2+) ions in THF, and for H(+) and Cd(2+) ions in water.
متن کامل